AdaBoost学习:
定义:
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用adaboost分类器可以排除一些不必要的训练数据特征,并放在关键的训练数据上面。
(但是在学习过程中,一开始对于弱分类器和强分类器理解不透彻)
算法过程
经过学习后,对其过程理解如下:
AdaBoost算法的具体步骤如下:
1. 给定训练样本集S,其中X和Y分别对应于正例样本和负例样本; T为训练的最大循环次数;
2. 初始化样本权重为1/n ,即为训练样本的初始概率分布;
3. 第一次迭代:
(1) 训练样本的概率分布相当下,训练弱分类器;
(2) 计算弱分类器的错误率;
(3) 选取合适阈值,使得误差最小;