AdaBoost学习

AdaBoost是一种迭代算法,通过训练不同的弱分类器并组合成强分类器。其核心是根据错误率调整样本权重,重点关注误分类样本,从而提升分类效果。文章详细介绍了算法步骤、实例解释以及与SVM的结合应用,探讨了为何要增加错误分类样本的权重以优化分类器性能。
摘要由CSDN通过智能技术生成

AdaBoost学习:

定义:

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用adaboost分类器可以排除一些不必要的训练数据特征,并放在关键的训练数据上面。

 

(但是在学习过程中,一开始对于弱分类器和强分类器理解不透彻)

算法过程

经过学习后,对其过程理解如下:

AdaBoost算法的具体步骤如下:

1. 给定训练样本集S,其中XY分别对应于正例样本和负例样本; T为训练的最大循环次数;

2. 初始化样本权重为1/n ,即为训练样本的初始概率分布

3. 第一次迭代:

(1) 训练样本的概率分布相当下,训练弱分类器

(2) 计算弱分类器的错误率;

(3) 选取合适阈值,使得误差最小;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值