机器学习岗位找工作记录帖-百度,大众点评offer到手

本文作者分享了自己在机器学习岗位找工作的经历,包括在百度和大众点评的面试过程,以及简历修改的心得。作者从阿里、腾讯的招聘情况谈到自己在百度的3轮面试,以及在大众点评的2轮面试,最终收获了百度和大众点评的offer。文章强调了简历的重要性,以及在面试中如何应对问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回顾

今年找工作的形势似乎不太好啊,先是阿里缩招,接着腾讯又只在南京设立开发岗的面试点,紧接着美团又只给南京开发岗发了offer,机器学习岗没人收到,当时真是心都凉了啊,想着找个工作怎么这么难啊!
阿里我笔试过了可惜没预约上,腾讯是最后一天我才报的名,结果没给我笔试通知,所以百度是我面的第一家,很幸运地面到了3面,在等待结果期间又面了大众点评,在二面的时候正好收到了百度hr电话,虽然挺尴尬但因为是百度的电话,不得不接呀,所以只好当着二面面试官的面接电话。接完电话心情亢奋,思如泉涌,接着顺利回答了面试官问题,刚刚已接到大众点评offer通知啦。
拿到百度offer我就心满意足了,也不再去和其他人抢offer了,找工作还是蛮辛苦的,现在可以好好看点书,做点题,充实下自己啦。

简历的修改

我的简历最初写得很不咋地,找实习的时候我室友便很鄙视我的简历,说:“这种简历居然也能给你面试机会,太不可思议了”。
简历写得确实很不用心,后来也被胡老师指出这点,所以我便花了2天好好回顾了下研究生经历做的事情,把项目部分给好好充实了下。

简历修改前的项目部分

不仅项目少,而且描述得也不好!
这里写图片描述

修改之后

添加了项目背景,项目规模以及主要职责,如有需要还可以添加项目周期的。
1. 深928284)![这里写图片描述](https://img-blog.csdn.net/20150928193度图像下的的人脸识别
项目背景:在深度人脸图像上试验并找到适合于深度图像的特征,通过对固定
特征模型 LBP,HoG 与基于样本学习的 Sparse Autoencoder 进行效果上的比较,
分类模型采用 svm 模型
项目规模: 2 人
主要职责:负责整体算法设计,包括特征提取与分类训练
2. 基于稀疏表示分类的人脸识别
项目背景:基于 3 个实际应用中会遇到的问题解决人脸识别问题:人脸的各
种姿态,表情变化;新样本加入时模型的更新;大数据下的并行化/.
项目规模: 2 人 <

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值