题目:
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
首先旋转数组的意思就是将前面的若干个元素切块放到后面,如:我们将一个数组{1,2,3,4,5}最开始的3个元素搬到数组的末尾,此时我们得到的切块为{1,2,3},而原来的数组只剩下{4,5},然后我们把切块{1,2,3}放到剩下数组{4,5}的后面,变成新的数组{4,5,1,2,3}.
当我们旋转了数组大小个(5个)的时候,数组将会和原来一样。如:对上面数组{1,2,3,4,5}的前5个元素旋转,切块为{1,2,3,4,5},剩下的数组为{ },将切块放到数组变为新的数组{1,2,3,4,5}.
另外说一下非递减数组的意思:就是关键字递增序排列,但是并非单调递增(因为有重复的关键字)。如 1,2,3,3,4,5,8,8,….
对于这个题目,第一个方法就是简单遍历找到最小的数,然后返回。时间复杂度为O(n)
public int minNumberInRotateArray(int [] array) {
int min = 0;
for (int i = 0; i <array.length; i++) {
if (min > array[i]) {
min = array[i];
}
}
return min;
}
第二个方法就是对第一个方法进行了一下优化。
思想:数组其实分为两部分,前半部分是递增的数组,后半部分也是递增的数组; 前半部分的最后一个元素比后半部分的第一个元素大,利用这个特点在遍历的时候就行剪枝就好了。
时间复杂度为O(n)
代码:
public int minNumberInRotateArray(int[] array) {
if (array.length == 0)
return 0;
for (int i = 0; i < array.length - 1; i++) {
if (array[i] > array[i + 1])
return array[i + 1];
}
return array[0];
}
最后一种方法:
虽然整个数组是无序的,可是前半部分是递增的,后半部分也是递增的,采用二分法解答这个问题。最小元素就是前后部分的分界线。
mid=low+(high-low)/2
ps: (low+high)/2 这种计算方法可能会产生溢出。
需要考虑三种情况:
(1)array[mid]>array[high];
出现这种情况说明 low 指向前半部分,mid也是指向前半部分。
我们需要求的最小元素不在这里面,肯定在它的右边
如:{4,5,6,1,2,3},6>3;
所以low=mid+1
(2)array[mid] < array[high];
出现这种情况说明 mid 指向 后半部分,high也是指向后半部分;
因为这是mid已经在后半部分,mid可能就是最小元素。
如:{4,5,1,2,3},1<3:
所以high=mid
ps:如果high=mid-1,则会可能将最小元素抛在high后面。
(3)array[mid]==array[high];
出现这种情况说明不好判断最小元素在左边还是右边。只好从后边一个一个往前找。
如{1,1,0,1,1,1,1,1} 最小元素在左边
{1,1,1,1,0,1,1} 最小元素在右边
时间复杂度为O(logn)
代码:
public int minNumberInRotateArray(int [] array) {
int low = 0 ; int high = array.length - 1;
while(low < high){
int mid = low + (high - low) / 2;
if(array[mid] > array[high]){
low = mid + 1;
}else if(array[mid] == array[high]){
high = high - 1;
}else{
high = mid;
}
}
return array[low];
}
如果用最小堆的话,那你建堆的时候就需要扫描一遍数组,那就已经是O(n)了,还是没有上面的方法快。