二叉树的最大/小深度 递归非递归 python

最大深度
递归结束的条件是节点为空,返回0
非递归用栈 去深度优先搜索树的所有节点

最小深度
非递归用队列 , 一旦节点没有左右孩子,就结束返回了

class Solution(object):
    def maxDepth1(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if root==None:
            return 0
        else:
            l = 1 + self.maxDepth(root.left)
            r = 1 + self.maxDepth(root.right)
        return max(l, r)
    def maxDepth(self, root):
        stack = []
        if root:
            stack.append((1,root))
        depth = 0
        while stack!=[]:
            curdepth, root = stack.pop()
            if root:
                depth = curdepth if curdepth>depth else depth
            
                stack.append((curdepth+1,root.left))
                stack.append((curdepth+1,root.right))
        return depth
class Solution(object):
    def minDepth1(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if root == None:
            return 0
        if root.left==None and root.right == None:
            return 1
        elif root.left == None:
            return 1 + self.minDepth(root.right)
        elif root.right == None:
            return 1 + self.minDepth(root.left)
        else:
            return 1 + min(self.minDepth(root.left), self.minDepth(root.right))
        
    def minDepth(self, root):
        if root == None:
            return 0
        if root.left == None and root.right == None:
            return 1
        
        queue = [(1,root)]
        
        while queue != []:
            curdepth, root = queue.pop(0)
            if root.left == None and root.right == None:
                return curdepth
            if root.left:
                queue.append((curdepth+1, root.left))
            if root.right:
                queue.append((curdepth+1, root.right))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值