24.马尔可夫矩阵,傅里叶级数
马尔可夫矩阵
马尔可夫矩阵:各元素均非负且各列元素和均为 1 1 1的方阵(在很多地方会定义为各行元素和均为 1 1 1)
-
马尔可夫矩阵的乘积也为马尔可夫矩阵
证明: 设两个 n n n阶马尔可夫矩阵 A , B A , B A,B,令 C = A B C = AB C=AB
∴ ∑ j = 1 n c j , i = ( a 1 , 1 b 1 , i + ⋯ + a 1 , n b n , i ) + ( a 2 , 1 b 1 , i + ⋯ + a 2 , n b n , i ) + ⋯ + ( a n , 1 b 1 , i + ⋯ + a n , n b n , i ) = b 1 , i ( a 1 , 1 + ⋯ + a n , 1 ) + b 2 , i ( a 1 , 2 + ⋯ + a n , 2 ) + ⋯ + b n , i ( a 1 , n + ⋯ + a n , n ) = b 1 , i ∑ k = 1 n a k , 1 + b 2 , i ∑ k = 1 n a k , 2 + ⋯ + b n , i ∑ k = 1 n a k , n = ∑ k = 1 n b k , i = 1 \begin{aligned} \therefore \sum_{j = 1}^{n} c_{j , i} & = (a_{1 , 1} b_{1 , i} + \cdots + a_{1 , n} b_{n , i}) + (a_{2 , 1} b_{1 , i} + \cdots + a_{2 , n} b_{n , i}) + \cdots + (a_{n , 1} b_{1 , i} + \cdots + a_{n , n} b_{n , i}) \\ & = b_{1 , i} (a_{1 , 1} + \cdots + a_{n , 1}) + b_{2 , i} (a_{1 , 2} + \cdots + a_{n , 2}) + \cdots + b_{n , i} (a_{1 , n} + \cdots + a_{n , n}) \\ & = b_{1 , i} \sum_{k = 1}^{n} a_{k , 1} + b_{2 , i} \sum_{k = 1}^{n} a_{k , 2} + \cdots + b_{n , i} \sum_{k = 1}^{n} a_{k , n} \\ & = \sum_{k = 1}^{n} b_{k , i} \\ & = 1 \end{aligned} ∴j=1∑ncj,i=(a1,1b1,i+⋯+a1,nbn,i)+(a2,1b1,i+⋯+a2,nbn,i)+⋯+(an,1b1,i+⋯+an,nbn,i)=b1,i(a1,1+⋯+an,1)+b2,i(a1,2+⋯+an,2)+⋯+bn,i(a1,n+⋯+an,n)=b1,ik=1∑nak,1+b2,ik=1∑nak,2+⋯+bn,ik=1∑nak,n=k=1∑nbk,i=1
又容易证明当 A , B A , B A,B各元素均非负时 C C C各元素也非负,所以 C C C是马尔可夫矩阵
- 马尔可夫矩阵的正整数幂也是马尔可夫矩阵
-
马尔科夫矩阵的特征值和特征向量
-
依第 21 21 21讲的小技巧可知 1 1 1一定为一个马尔可夫矩阵的特征值之一
-
马尔可夫矩阵的特征值的绝对值(复数特征值则为模)一定不大于 1 1 1
证明: 暂时不会证明 \color{OrangeRed}暂时不会证明 暂时不会证明
-
-
马尔可夫链
马尔可夫矩阵可用于求解概率相关的问题
例: 有一个史莱姆在 A A A区域和 B B B区域之间来回跳动,当它在 A A A时,下一次有 0.4 0.4 0.4的概率跳往 B B B,有 0.6 0.6 0.6的概率留在 A A A;当它在 B B B时,下一次有 0.2 0.2 0.2的概率跳往 A A A,有 0.8 0.8 0.8的概率留在 B B B,史莱姆刚开始在 A A A,问无数次跳跃后它在 A A A的概率
构造二维向量 u ⃗ n \vec{u}_n un使其两个元素分别表示 n n n次跳动后史莱姆在 A A A的概率和在 B B B的概率,则 u ⃗ 0 = [ 1 0 ] \vec{u}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} u0=[10]
再构造一个马尔可夫矩阵 A = [ 0.6 0.2 0.4 0.8 ] A = \begin{bmatrix} 0.6 & 0.2 \\ 0.4 & 0.8 \end{bmatrix} A=[0.60.40.20.8],那么 u ⃗ k + 1 = A u ⃗ k \vec{u}_{k + 1} = A \vec{u}_k uk+1=Auk,所以 u ⃗ k = A k u ⃗ 0 \vec{u}_k = A^k \vec{u}_0 uk=Aku0
计算可得 A A A的特征值为 λ 1 = 1 , λ 2 = 0.4 \lambda_1 = 1 , \lambda_2 = 0.4 λ1=1,λ2=0.4,分别对应特征向量 x ⃗ 1 = [ 1 2 ] , x ⃗ 1 = [ 1 − 1 ] \vec{x}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} , \vec{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} x1=[12],x1=[1−1]
又 u ⃗ 0 = 1 3 [ 1 2 ] + 2 3 [ 1 − 1 ] \vec{u}_0 = \dfrac{1}{3} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \dfrac{2}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} u0=31[12]+32[1−1],所以 u ⃗ k = 1 3 ⋅ 1 k [ 1 2 ] + 2 3 ⋅ 0. 4 k [ 1 − 1 ] \vec{u}_k = \dfrac{1}{3} \cdot 1^k \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \dfrac{2}{3} \cdot 0.4^k \begin{bmatrix} 1 \\ -1 \end{bmatrix} uk=31⋅1k[12]+32⋅0.4k[1−1]
又 lim k → + ∞ 0. 4 k = 0 \lim_{k \to +\infty} 0.4^k = 0 limk→+∞0.4k=0,所以 lim k → + ∞ u ⃗ k = 1 3 [ 1 2 ] \lim_{k \to +\infty} \vec{u}_k = \dfrac{1}{3} \begin{bmatrix} 1 \\ 2 \end{bmatrix} limk→+∞uk=31[12],因而无数次跳跃后它在 A A A的概率为 1 3 \dfrac{1}{3} 31
-
傅里叶级数
-
若有一组 n n n维空间的标准正交基 q ⃗ 1 , q ⃗ 2 , ⋯ , q ⃗ n \vec{q}_1 , \vec{q}_2 , \cdots , \vec{q}_n q1,q2,⋯,qn
那么这个空间中的任意向量都可以用它们表示,即 v ⃗ = x 1 q ⃗ 1 + x 2 q ⃗ 2 + ⋯ + x n q ⃗ n \vec{v} = x_1 \vec{q}_1 + x_2 \vec{q} _2 + \cdots + x_n \vec{q}_n v=x1q1+x2q2+⋯+xnqn
令 Q = [ q ⃗ 1 q ⃗ 2 ⋯ q ⃗ n ] , x ⃗ = [ x 1 x 2 ⋮ x n ] Q = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 & \cdots & \vec{q}_n \end{bmatrix} , \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} Q=[q1q2⋯qn],x= x1x2⋮xn ,则 v ⃗ = Q x ⃗ \vec{v} = Q \vec{x} v=Qx,所以 x ⃗ = Q − 1 v ⃗ = Q T v ⃗ \vec{x} = Q^{-1} \vec{v} = Q^T \vec{v} x=Q−1v=QTv,这样可以很方便地求得 x ⃗ \vec{x} x中的每个元素,即 x i = q ⃗ i T ⋅ v ⃗ x_i = \vec{q}_i^T \cdot \vec{v} xi=qiT⋅v
这个求法也可以用 q ⃗ i T ⋅ v ⃗ = x 1 q ⃗ 1 q ⃗ i T + ⋯ + x i q ⃗ i q ⃗ i T + ⋯ + x n q ⃗ n q ⃗ i T = x i q ⃗ i q ⃗ i T = x i \vec{q}_i^T \cdot \vec{v} = x_1 \vec{q}_1 \vec{q}_i^T + \cdots + x_i \vec{q}_i \vec{q}_i^T + \cdots + x_n \vec{q}_n \vec{q}_i^T = x_i \vec{q}_i \vec{q}_i^T = x_i qiT⋅v=x1q1qiT+⋯+xiqiqiT+⋯+xnqnqiT=xiqiqiT=xi来理解
-
傅里叶级数
傅里叶级数可以展开任何周期函数,即 f ( x ) = a 0 + a 1 c o s x + b 1 s i n x + ⋯ + a n c o s n x + b n s i n n x + ⋯ f(x) = a_0 + a_1 cos\ x + b_1 sin\ x + \cdots + a_n cos\ nx + b_n sin\ nx + \cdots f(x)=a0+a1cos x+b1sin x+⋯+ancos nx+bnsin nx+⋯
与刚才的用 n n n个标准正交向量表示空间中的所有向量不同,此时维度是无限的,但这些三角函数的性质还是正交
这就需要引入函数正交的含义,在向量中正交的判断是求点积,函数是曲线,有无数个点,所以点积由相加变成了求积分
对于函数 f , g f , g f,g,二者在区间 I I I上正交当且仅当二者在 I I I上均有定义且在 I I I上的定积分 ∫ f ( x ) g ( x ) d x = 0 \int f(x)g(x)\ dx = 0 ∫f(x)g(x) dx=0
证明 c o s m x , c o s n x cos\ mx , cos\ nx cos mx,cos nx在 ( 0 , 2 π ) (0 , 2 \pi) (0,2π)上正交:
∫ 0 2 π c o s m x ⋅ c o s n x d x = 1 2 ∫ 0 2 π ( c o s ( m + n ) x + c o s ( m − n ) x ) d x = 1 2 [ s i n ( m + n ) x m + n + s i n ( m + n ) x m − n ] 0 2 π = 0 \begin{aligned} \int_{0}^{2 \pi} cos\ mx\ \cdot cos\ nx\ dx & = \dfrac{1}{2} \int_{0}^{2 \pi} (cos\ (m + n)x + cos\ (m - n)x)\ dx \\ & = \dfrac{1}{2} \left[ \dfrac{sin\ (m + n)x}{m + n} + \dfrac{sin\ (m + n)x}{m - n} \right]_0^{2 \pi} \\ & = 0 \end{aligned} ∫02πcos mx ⋅cos nx dx=21∫02π(cos (m+n)x+cos (m−n)x) dx=21[m+nsin (m+n)x+m−nsin (m+n)x]02π=0
类似可证 c o s x , s i n x , c o s 2 x , s i n 2 x , ⋯ cos\ x , sin\ x , cos\ 2x , sin\ 2x , \cdots cos x,sin x,cos 2x,sin 2x,⋯在 ( 0 , 2 π ) (0 , 2 \pi) (0,2π)上两两正交,又因为这些三角函数都有周期 2 π 2 \pi 2π,所以它们在 ( 2 k π , 2 k π + 2 π ) , k ∈ Z (2k \pi , 2k \pi + 2 \pi) , k \in Z (2kπ,2kπ+2π),k∈Z上两两正交
接下来求解傅里叶级数中的 a 0 , a 1 , ⋯ a_0 , a_1 , \cdots a0,a1,⋯,可以使用和向量类似的方法,等式左右分别乘上对应的三角函数,再在 ( 0 , 2 π ) (0 , 2 \pi) (0,2π)上积分
如 ∫ 0 2 π c o s x ⋅ f ( x ) d x = a 1 ∫ 0 2 π c o s 2 x d x = π a 1 \int_{0}^{2 \pi} cos\ x \cdot f(x)\ dx = a_1 \int_{0}^{2 \pi} cos^2x\ dx = \pi a_1 ∫02πcos x⋅f(x) dx=a1∫02πcos2x dx=πa1,可得 a 1 = 1 π ∫ 0 2 π c o s x ⋅ f ( x ) d x a_1 = \dfrac{1}{\pi} \int_{0}^{2 \pi} cos\ x \cdot f(x)\ dx a1=π1∫02πcos x⋅f(x) dx
当然 a 0 = 1 2 π ∫ 0 2 π f ( x ) d x a_0 = \dfrac{1}{2 \pi} \int_{0}^{2 \pi} f(x)\ dx a0=2π1∫02πf(x) dx
-
打赏
制作不易,若有帮助,欢迎打赏!