目录
31.线性变换及对应矩阵
线性变换相当于是矩阵的抽象表示,每个线性变换都对应着一个矩阵
例: 考虑一个变换 T T T,使得平面上的一个向量投影为平面上的另一个向量,即 T : R 2 → R 2 T:R^2 \to R^2 T:R2→R2,如图:
图中有两个任意向量 v ⃗ , w ⃗ \vec{v} , \vec{w} v,w和一条直线,作 v ⃗ , w ⃗ \vec{v} , \vec{w} v,w在直线上的投影,分别记作 T ( v ⃗ ) , T ( w ⃗ ) T(\vec{v}) , T(\vec{w}) T(v),T(w),可以将 T T T视为一个函数或一 个映射,即输入一个向量,输出一个新向量,这就是一个变换
想让这种变换成为线性变换,需要满足两个式子: { T ( v ⃗ + w ⃗ ) = T ( v ⃗ + w ⃗ ) T ( c v ⃗ ) = c T ( v ⃗ ) \left \{ \begin{matrix} T(\vec{v} + \vec{w}) = T(\vec{v} + \vec{w}) \\ T(c \vec{v}) = c T(\vec{v}) \end{matrix} \right. { T(v+w)=T(v+w)T(cv)=cT(v),即满足加法不变性和数乘不变性
这两个式子也可以结合为 T ( c v ⃗ + d w ⃗ ) = c T ( v ⃗ ) + d T ( w ⃗ ) T(c \vec{v} + d \vec{w}) = c T(\vec{v}) + d T(\vec{w}) T(cv+dw)=cT(v)+dT(w)
可以验证,此处的投影变换是一种线性变换
判断某个变换是否为线性变换并不困难,只需要判断是否满足加法不变性和数乘不变性即可
反例1: 平移整个平面,即平面中的每个向量 v ⃗ \vec{v} v都加上一个固定的 v ⃗ 0 \vec{v}_0 v0,设这个简单的变换为 T 0 T_0 T0,它并不是线性变换,比如考虑数乘, T 0 ( 2 v ⃗ ) = 2 v ⃗ + v ⃗ 0 ≠ 2 T 0 ( v ⃗ ) = 2 ( v ⃗ + v ⃗ 0 ) T_0(2 \vec{v}) = 2 \vec{v} + \vec{v}_0 \ne 2 T_0(\vec{v}) = 2(\vec{v} + \vec{v}_0) T0(2v)=2v+v0=2T0(v)=2(v+v0),不满足数乘不变性
还可以考虑对 0 ⃗ \vec{0} 0的变换,如果是线性变换则需满足 T 0 ( 0 ⃗ ) = 0 ⃗ T_0(\vec{0}) = \vec{0} T0(0)=0,因为对于任意变换 T T T,在数乘不变性的式子中取 v ⃗ = 0 ⃗ \vec{v} = \vec{0}