29.相似矩阵,诺尔丹型
-
正定矩阵的性质
-
正定矩阵的逆矩阵也为正定矩阵
证明: 正定矩阵的特征值为正数,所以正定矩阵一定可逆并且其逆矩阵的特征值为这些正数的倒数,也为正数,
所以正定矩阵的逆矩阵也为正定矩阵
-
同阶正定矩阵的和也为正定矩阵
证明: 两个同阶正定矩阵 A , B A , B A,B满足 ∀ x ⃗ ≠ 0 ⃗ , x ⃗ T A x ⃗ > 0 , x ⃗ T B x ⃗ > 0 \forall \vec{x} \ne \vec{0} , \vec{x}^T A \vec{x} > 0 , \vec{x}^T B \vec{x} > 0 ∀x=0,xTAx>0,xTBx>0,两式相加得 ∀ x ⃗ ≠ 0 ⃗ , x ⃗ T ( A + B ) x ⃗ > 0 \forall \vec{x} \ne \vec{0} , \vec{x}^T (A + B) \vec{x} > 0 ∀x=0,xT(A+B)x>0,即 A + B A + B A+B为正定矩阵
-
-
A T A A^T A ATA的正定性
有 x ⃗ T A T A x ⃗ = ( A x ⃗ ) T ( A x ⃗ ) = ∣ A x ⃗ ∣ 2 \vec{x}^T A^T A \vec{x} = (A \vec{x})^T (A \vec{x}) = |A \vec{x}|^2 xTATAx=(Ax)T(Ax)=∣Ax∣2,所以 ∀ x ⃗ ≠ 0 ⃗ , x ⃗ T A T A x ⃗ ≥ 0 \forall \vec{x} \ne \vec{0} , \vec{x}^T A^T A \vec{x} \ge 0 ∀x=0,xTATAx≥0,因而 A T A A^T A ATA至少是半正定的
所以当 ∀ x ⃗ ≠ 0 ⃗ , A x ⃗ ≠ 0 ⃗ \forall \vec{x} \ne \vec{0} , A \vec{x} \ne \vec{0} ∀x=0,Ax=0时 A T A A^T A ATA是正定的,即 A A A的零空间中只有 0 ⃗ \vec{0} 0,所以 A A A列满秩时 A T A A^T A ATA是正定的
-
相似矩阵
对于两个 n n n阶方阵 A , B A , B A,B,若存在可逆矩阵 M M M使得 B = M − 1 A M B = M^{-1} A M B=M−1AM,那么 A , B A , B A,B互为相似矩阵,记作 A ∼ B A \sim B A∼B
比如一个可对角化的矩阵 A A A满足 Λ = S − 1 A S \Lambda = S^{-1} A S Λ=S−1AS,因而 A A A和其特征值矩阵互为相似矩阵
-
相似矩阵具有传递性
证明: 若 A , B A , B A,B互为相似矩阵, B , C B , C B,C互为相似矩阵,设 B = M 1 − 1 A M 1 , C = M 2 − 1 B M 2 B = M_1^{-1} A M_1 , C = M_2^{-1} B M_2 B=M1−1AM1,C=M2−1BM2
则 C = M 2 − 1 M 1 − 1 A M 1 M 2 = ( M 1 M 2 ) − 1 A ( M 1 M 2 ) C = M_2^{-1} M_1^{-1} A M_1 M_2 = (M_1 M_2)^{-1} A (M_1 M_2) C=M2−1M1−1AM1M2=(M1M2)−1A(M1M2),所以 A , C A , C A,C互为相似矩阵
-
相似矩阵的同次幂互为相似矩阵
证明: 若 B = M − 1 A M B = M^{-1} A M B=M−1AM,则 B k = M − 1 A M M − 1 A M ⋯ M − 1 A M = M − 1 A k M B^k = M^{-1} A M M^{-1} A M \cdots M^{-1} A M = M^{-1} A^k M Bk=M−1AMM−1AM⋯M−1AM=M−1AkM
-
相似矩阵有相同的特征值
证明: 设两个互为相似矩阵的方阵 A , B A , B A,B,并且 B = M − 1 A M B = M^{-1} A M B=M−1AM
对于 A A A的任意特征值 λ \lambda λ及其对应的任意特征向量 x ⃗ \vec{x} x均满足 A x ⃗ = λ x ⃗ A \vec{x} = \lambda \vec{x} Ax=λx,即 A M M − 1 x ⃗ = λ x ⃗ A M M^{-1} \vec{x} = \lambda \vec{x} AMM−1x=λx,左右同乘 M − 1 M^{-1} M−1得 M − 1 A M M − 1 x ⃗ = λ M − 1 x ⃗ M^{-1} A M M^{-1} \vec{x} = \lambda M^{-1} \vec{x} M−1AMM−1x=λM−1x,即 B M − 1 x ⃗ = λ M − 1 x ⃗ B M^{-1} \vec{x} = \lambda M^{-1} \vec{x} BM−1x=λM−1x,又依 x ⃗ ≠ 0 ⃗ \vec{x} \ne \vec{0} x=0得 M − 1 x ⃗ ≠ 0 ⃗ M^{-1} \vec{x} \ne \vec{0} M−1x=0,所以 λ \lambda λ是 B B B的特征值
同理可证 B B B的特征值也是 A A A的特征值,所以二者有完全相同的特征值
从证明中可以发现相似矩阵相同特征值对应的特征向量不一定相同
- 相似矩阵的行列式和迹相同
-
-
诺尔丹标准型
考虑存在重复特征值的方阵,当方阵为二阶并且两个特征值都为 4 4 4时,有两种情况: [ 4 0 0 4 ] , [ 4 1 0 4 ] \begin{bmatrix} 4 & 0 \\ 0 & 4\end{bmatrix} , \begin{bmatrix} 4 & 1 \\ 0 & 4\end{bmatrix} [4004],[4014]
第一种情况, ∀ M , M − 1 [ 4 0 0 4 ] M = [ 4 0 0 4 ] \forall M , M^{-1} \begin{bmatrix} 4 & 0 \\ 0 & 4\end{bmatrix} M = \begin{bmatrix} 4 & 0 \\ 0 & 4\end{bmatrix} ∀M,M−1[4004]M=[4004],所以它只有自己这一个相似矩阵
第二种情况包括了剩下的所有二阶且两个特征值都为 4 4 4的方阵,他们均互为相似矩阵,而 [ 4 1 0 4 ] \begin{bmatrix} 4 & 1 \\ 0 & 4\end{bmatrix} [4014]是其中最为简洁的一个,这种形式就是诺尔丹标准型
-
诺尔丹块
形如 [ λ 1 0 ⋯ 0 0 0 λ 1 ⋯ 0 0 0 0 λ ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ 0 0 0 ⋯ λ 1 0 0 0 ⋯ 0 λ ] \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ 0 & 0 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots &\lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{bmatrix} λ00⋮001λ0⋮0001λ⋮00⋯⋯⋯⋱⋯⋯000⋱λ0000⋮1λ 的方阵被称为诺尔丹块,记作 J J J,特别地, [ λ ] [\lambda] [λ]也可以被视为一个诺尔丹块
证明每个诺尔丹块都只有一个线性无关的特征向量:
设一个 n n n阶诺尔丹矩阵 J J J, ∀ x ⃗ , J x ⃗ \forall \vec{x} , J \vec{x} ∀x,Jx的最后一个元素都是 λ x n \lambda x_n λxn
①当 x n ≠ 0 x_n \ne 0 xn=0时, J J J的特征值只能是 λ \lambda λ,但这还要求 λ x 1 = λ x 1 + x 2 , ⋯ \lambda x_1 = \lambda x_1 + x_2 , \cdots λx1=λx1+x2,⋯,所以 x 2 = ⋯ = x n = 0 x_2 = \cdots = x_n = 0 x2=⋯=xn=0,矛盾舍去
②当 x n = 0 x_n = 0 xn=0时, J x ⃗ J \vec{x} Jx的第 n − 1 n - 1 n−1个元素是 λ x n − 1 \lambda x_{n - 1} λxn−1,若 x n − 1 ≠ 0 x_{n - 1} \ne 0 xn−1=0,同理可得矛盾舍去
依此类推可得 x 2 = ⋯ = x n = 0 x_2 = \cdots = x_n = 0 x2=⋯=xn=0
综上, J n J_n Jn的特征向量只能为 [ x 1 0 ⋮ 0 ] \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} x10⋮0 ,即只有一个线性无关的特征向量,并且特征值为 λ \lambda λ
我们认为 [ λ ] [\lambda] [λ]也满足这个定理
-
诺尔丹矩阵
诺尔丹矩阵:将诺尔丹块排列在主对角线上且其余元素为 0 0 0的矩阵,即形如 [ J 1 O ⋯ O O J 2 ⋯ O ⋮ ⋮ ⋱ ⋮ O O ⋯ J d ] \begin{bmatrix} J_1 & O & \cdots & O \\ O & J_2 & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & J_d \end{bmatrix} J1O⋮OOJ2⋮O⋯⋯⋱⋯OO⋮Jd 的矩阵
证明诺尔丹矩阵的线性无关特征向量的数量等于其诺尔丹块的数量:
对于一个有 d d d个诺尔丹块的诺尔丹矩阵,设这些诺尔丹块的阶数依次为 n 1 , n 2 , ⋯ , n d n_1 , n_2 , \cdots , n_d n1,n2,⋯,nd,它的一组线性无关特征向量可以是 [ 1 0 ⋮ 0 ] , [ n 1 ∗ 0 1 0 ⋮ 0 ] , ⋯ , [ ( n 1 + ⋯ + n d − 1 ) ∗ 0 1 0 ⋮ 0 ] \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} , \begin{bmatrix} n_1 * 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} , \cdots , \begin{bmatrix} (n_1 + \cdots + n_{d - 1}) * 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} 10⋮0 , n1∗010⋮0 ,⋯, (n1+⋯+nd−1)∗010⋮0
想要在诺尔丹块 J i J_i Ji的贡献范围内满足 J i [ x n 1 + ⋯ + n i − 1 + 1 ⋮ x n 1 + ⋯ + n i ] = λ [ x n 1 + ⋯ + n i − 1 + 1 ⋮ x n 1 + ⋯ + n i ] J_i \begin{bmatrix} x_{n_1 + \cdots + n_{i - 1} + 1} \\ \vdots \\ x_{n_1 + \cdots + n_i} \end{bmatrix} = \lambda \begin{bmatrix} x_{n_1 + \cdots + n_{i - 1} + 1} \\ \vdots \\ x_{n_1 + \cdots + n_i} \end{bmatrix} Ji xn1+⋯+ni−1+1⋮xn1+⋯+ni =λ xn1+⋯+ni−1+1⋮xn1+⋯+ni
则要有 x n 1 + ⋯ + n i − 1 + 2 = ⋯ = x n 1 + ⋯ + n i = 0 x_{n_1 + \cdots + n_{i - 1} + 2} = \cdots = x_{n_1 + \cdots + n_i} = 0 xn1+⋯+ni−1+2=⋯=xn1+⋯+ni=0,所以所有特征向量都可以由上述 d d d个特征向量表示,所以线性无关特征向量的数量等于其诺尔丹块的数量
可以发现诺尔丹矩阵的特征值等于其诺尔丹块的特征值
至于特征值的重复次数,或许会等于对应块的阶数( 不知道对不对 \color{OrangeRed}不知道对不对 不知道对不对)
任意方阵都与一个诺尔丹矩阵互为相似矩阵,当这个方阵可对角化时,它对应的诺尔丹矩阵即为它对应的 Λ \Lambda Λ,当这个方阵是对角阵时,它对应的诺尔丹矩阵即为它本身
证明: 暂时不会证明 \color{OrangeRed}暂时不会证明 暂时不会证明
打赏
制作不易,若有帮助,欢迎打赏!