目录
29.相似矩阵,诺尔丹型
-
正定矩阵的性质
-
正定矩阵的逆矩阵也为正定矩阵
证明: 正定矩阵的特征值为正数,所以正定矩阵一定可逆并且其逆矩阵的特征值为这些正数的倒数,也为正数,
所以正定矩阵的逆矩阵也为正定矩阵
-
同阶正定矩阵的和也为正定矩阵
证明: 两个同阶正定矩阵 A , B A , B A,B满足 ∀ x ⃗ ≠ 0 ⃗ , x ⃗ T A x ⃗ > 0 , x ⃗ T B x ⃗ > 0 \forall \vec{x} \ne \vec{0} , \vec{x}^T A \vec{x} > 0 , \vec{x}^T B \vec{x} > 0 ∀x=0,xTAx>0,xTBx>0,两式相加得 ∀ x ⃗ ≠ 0 ⃗ , x ⃗ T ( A + B ) x ⃗ > 0 \forall \vec{x} \ne \vec{0} , \vec{x}^T (A + B) \vec{x} > 0 ∀x=0,xT(A+B)x>0,即 A + B A + B A+B为正定矩阵
-
-
A T A A^T A ATA的正定性
有 x ⃗ T A T A x ⃗ = ( A x ⃗ ) T ( A x ⃗ ) = ∣ A x ⃗ ∣ 2 \vec{x}^T A^T A \vec{x} = (A \vec{x})^T (A \vec{x}) = |A \vec{x}|^2 xTATAx=(Ax)T(Ax)=∣Ax∣2,所以 ∀ x ⃗ ≠ 0 ⃗ , x ⃗ T A T A x ⃗ ≥ 0 \forall \vec{x} \ne \vec{0} , \vec{x}^T A^T A \vec{x} \ge 0 ∀x=0,xTATAx≥0,因而 A T A A^T A ATA至少是半正定的
所以当 ∀ x ⃗ ≠ 0 ⃗ , A x ⃗ ≠ 0 ⃗ \forall \vec{x} \ne \vec{0} , A \vec{x} \ne \vec{0} ∀x=0,Ax=0