MIT线性代数笔记-第29讲-相似矩阵,诺尔丹型

29.相似矩阵,诺尔丹型

  1. 正定矩阵的性质

    • 正定矩阵的逆矩阵也为正定矩阵

      证明: 正定矩阵的特征值为正数,所以正定矩阵一定可逆并且其逆矩阵的特征值为这些正数的倒数,也为正数,

      ​    所以正定矩阵的逆矩阵也为正定矩阵

    • 同阶正定矩阵的和也为正定矩阵

      证明: 两个同阶正定矩阵 A , B A , B A,B满足 ∀ x ⃗ ≠ 0 ⃗ , x ⃗ T A x ⃗ > 0 , x ⃗ T B x ⃗ > 0 \forall \vec{x} \ne \vec{0} , \vec{x}^T A \vec{x} > 0 , \vec{x}^T B \vec{x} > 0 x =0 ,x TAx >0,x TBx >0,两式相加得 ∀ x ⃗ ≠ 0 ⃗ , x ⃗ T ( A + B ) x ⃗ > 0 \forall \vec{x} \ne \vec{0} , \vec{x}^T (A + B) \vec{x} > 0 x =0 ,x T(A+B)x >0,即 A + B A + B A+B为正定矩阵

  2. A T A A^T A ATA的正定性

    x ⃗ T A T A x ⃗ = ( A x ⃗ ) T ( A x ⃗ ) = ∣ A x ⃗ ∣ 2 \vec{x}^T A^T A \vec{x} = (A \vec{x})^T (A \vec{x}) = |A \vec{x}|^2 x TATAx =(Ax )T(Ax )=Ax 2,所以 ∀ x ⃗ ≠ 0 ⃗ , x ⃗ T A T A x ⃗ ≥ 0 \forall \vec{x} \ne \vec{0} , \vec{x}^T A^T A \vec{x} \ge 0 x =0 ,x TATAx 0,因而 A T A A^T A ATA至少是半正定的

    所以当 ∀ x ⃗ ≠ 0 ⃗ , A x ⃗ ≠ 0 ⃗ \forall \vec{x} \ne \vec{0} , A \vec{x} \ne \vec{0} x =0 ,Ax =0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒蜩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值