- 博客(13)
- 收藏
- 关注
原创 算法导论 5 线性时间排序
算法导论 5-线性时间排序1. 决策树a. 用决策树来表示排序算法的过程b. 用决策树的表达方式比较排序算法2. 线性时间排序a. 计数排序(Counting Sort)b. 基数排序(Radix Sort)目前已知最好的排序算法是,随机算法,非常复杂,其时间复杂度为Θ(nlglgn)\Theta(n\sqrt {lglgn})Θ(nlglgn)1. 决策树a. 用决策树来表示排序算法的过程例子: 对无序数组<a1,a2,a3><a_{1},a_{2},a_{3}><
2021-09-25 21:33:31 145
原创 接口测试工具
接口测试工具一、Postman二、Apache TMETER三、Locust一、Postman不能进行并发测试接口测试工具用于API测试的工具模拟请求的利器二、Apache TMETER可以测并发三、Locust测试(Python)是一个开源负载测试工具。使用 Python 代码定义用户行为,也可以仿真百万个用户。...
2021-06-21 21:20:04 172 2
原创 Docker相关
Docker使用指南一、Docker创建容器1.拉取镜像(1) 直接拉取镜像(2) Dockerfile创建镜像一、Docker创建容器1.拉取镜像Docker镜像库:(Docker hub).Docker拉取镜像有两种方式:docker pull 镜像名利用Dockerfile创建镜像上面两种方式都可以创建镜像,但是利用Dockerfile创建镜像有一个好处,Dockerfile在创建镜像的同时,可以添加一些依赖包。(1) 直接拉取镜像指令格式:docker pull 镜像
2021-06-10 19:59:33 441
翻译 MetaStyle: Three-Way Trade-Off AmongSpeed, Flexibility, and Quality in Neural Style Transfer
摘要:自盖蒂(Gatys)等人引入神经方法以来,在艺术风格转移的研究领域就出现了前所未有的繁荣。剩下的挑战之一是要在速度,灵活性和质量这三个关键方面之间进行权衡:(i)基于香草优化的算法可为任意样式产生令人印象深刻的结果,但由于其迭代性质而令人不快, (ii)基于前馈神经网络的快速逼近方法可产生令人满意的艺术效果,但仅限于有限的样式,并且(iii)诸如AdaIN之类的特征匹配方法可实现实时的任意...
2019-11-25 09:27:28 753 2
翻译 Style transfer with adaptation to the central objects of the scene
摘要: 风格转换是一个将具有某种内容的图像以另一种图像的风格呈现的问题,例如,以某位著名画家的绘画风格的全家福。 经典风格转换算法的缺点是,它会在内容图像的所有部分上均匀地施加风格,这会扰乱内容图像上的中心对象,例如人脸或文字,并使它们无法识别。 这项工作提出了一种新颖的风格转换算法,该算法可以自动检测...
2019-11-22 16:45:25 219 2
转载 Seq2Seq中的BasicDecoder,TrainingHelper,GreedyEmbedding
原文链接BasicDecoder\color{green}\text{BasicDecoder}BasicDecoder__init__( cell, helper, initial_state, output_layer=None )- cell: An RNNCell instance.- helper: A Helper instance.- initial_state: A (p...
2019-03-21 15:44:24 1260 4
原创 AttentionMechanism类
源代码TensorFlow函数:tf.layers.LayerLuong-style 注意力机制有两种类型:①standard Luong attentionEffective Approaches to Attention-based Neural Machine Translation 2015②scaled form inspired partly by the normalize...
2019-03-04 15:39:17 271
原创 AttentionWrapper
源码AttentionWrapper继承了rnn_cell_impl.RNNCellWraps&amp;amp;amp;amp;ThinSpace;another&amp;amp;amp;amp;ThinSpace;RNNCell&amp;amp;amp;amp;ThinSpace;with&amp;amp;amp;amp;ThinSpace;attention.\color{pink}Wraps\,another \,RNNCell\
2019-03-04 15:38:25 690
转载 Encoder-Decoder具体过程
原文链接Encoder的具体实现input:不是原始的序列,而是将序列中的每个元素都转换为字典中对应的id。不管是train还是inference阶段,为了效率都是一次输入一个mini-batch,所以需要为input定义一个int型rank=2的placeholder。?embedding:embedding作用,定义为trainable=True的变量,这样即使使用pre-trained...
2019-02-22 14:57:07 3595
翻译 neural machine translation by jointly learning to align and translate阅读
原文地址 2015摘要与传统的统计机器翻译不同的是,神经机器翻译的目的是建立一个单一的神经网络,可以协同调整,使翻译性能最大化。我们推测,固定长度向量的使用是编码-解码结构性能提升的瓶颈;因此,本文提出了下面的方法来提升性能,通过让模型自动(soft-)搜索与预测目标词相关的源句部分,而不需要显式地将这些部分分块(hard segment)。通过定性分析,验证了我们方法的正确性。引言背...
2019-02-21 11:14:44 240
原创 seq2seq.AttentionWrapperState中的_compute_attention
AttentionWrapperState中的函数_compute_attention()理解:GitHub源码地址def _compute_attention(attention_mechanism, cell_output, attention_state, attention_layer): &quot;&quot;&quot;Computes the attent...
2019-02-20 16:34:53 840
翻译 注意力机制
原文深度学习中的注意力机制可以广义地解释为:注意力是一个重要性权重向量。Seq2Seq (Sutskever, et al. 2014)模型存在的缺陷:固定长度的上下文向量不能记住长句子。attention在上下文向量(context vector)和整个源输入之间进行截选,而不是根据解码器最后的隐藏状态建立单一的上下文向量。因此,上下文向量能够访问整个输入序列,我们无需担心遗忘。源序列和...
2019-02-20 16:07:48 717
原创 cs231 Assignment2 Question 4 出现安装问题:Unable to find vcvarsall.bat
在Python安装程序下找到\Lib\distutils\msvccompiler.py将函数get_build_version()调用best_version、best_dir之前,将其强制改为电脑上所安装的VS版本,及vcvarsall.bat路径:best_version=15best_dir='C:\Program Files\Microsoft\VisualStudio2017\V...
2018-10-30 09:30:36 436
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人