attention
jiaqi71
这个作者很懒,什么都没留下…
展开
-
AttentionMechanism类
源代码 TensorFlow函数:tf.layers.Layer Luong-style 注意力机制有两种类型: ①standard Luong attention Effective Approaches to Attention-based Neural Machine Translation 2015 ②scaled form inspired partly by the normalize...原创 2019-03-04 15:39:17 · 272 阅读 · 0 评论 -
注意力机制
原文 深度学习中的注意力机制可以广义地解释为:注意力是一个重要性权重向量。 Seq2Seq (Sutskever, et al. 2014)模型存在的缺陷:固定长度的上下文向量不能记住长句子。 attention在上下文向量(context vector)和整个源输入之间进行截选,而不是根据解码器最后的隐藏状态建立单一的上下文向量。 因此,上下文向量能够访问整个输入序列,我们无需担心遗忘。源序列和...翻译 2019-02-20 16:07:48 · 719 阅读 · 0 评论 -
seq2seq.AttentionWrapperState中的_compute_attention
AttentionWrapperState中的函数_compute_attention()理解: GitHub源码地址 def _compute_attention(attention_mechanism, cell_output, attention_state, attention_layer): """Computes the attent...原创 2019-02-20 16:34:53 · 840 阅读 · 0 评论 -
neural machine translation by jointly learning to align and translate阅读
原文地址 2015 摘要 与传统的统计机器翻译不同的是,神经机器翻译的目的是建立一个单一的神经网络,可以协同调整,使翻译性能最大化。 我们推测,固定长度向量的使用是编码-解码结构性能提升的瓶颈;因此,本文提出了下面的方法来提升性能,通过让模型自动(soft-)搜索与预测目标词相关的源句部分,而不需要显式地将这些部分分块(hard segment)。 通过定性分析,验证了我们方法的正确性。 引言 背...翻译 2019-02-21 11:14:44 · 240 阅读 · 0 评论 -
AttentionWrapper
源码 AttentionWrapper继承了rnn_cell_impl.RNNCell Wraps another RNNCell with attention.\color{pink}Wraps\,another \,RNNCell\原创 2019-03-04 15:38:25 · 690 阅读 · 0 评论