3.2 决策树(decision tree)应用

1. Python

2.  Python机器学习的库:scikit-learn

      2.1: 特性:

简单高效的数据挖掘和机器学习分析

对所有用户开放,根据不同需求高度可重用性

基于Numpy, SciPy和matplotlib

开源,商用级别:获得 BSD许可

 

 

     2.2 覆盖问题领域:

          分类(classification), 回归(regression), 聚类(clustering), 降维(dimensionality reduction)

          模型选择(model selection), 预处理(preprocessing)

 

 

3. 使用用scikit-learn

     安装scikit-learn: pip, easy_install, windows installer

     安装必要package:numpy, SciPy和matplotlib, 可使用Anaconda (包含numpy, scipy等科学计算常用

     package)

     安装注意问题:Python解释器版本(2.7 or 3.4?), 32-bit or 64-bit系统

 

4. 例子:

     

 

      文档: http://scikit-learn.org/stable/modules/tree.html

      解释Python代码

      安装 Graphviz: http://www.graphviz.org/

      配置环境变量

      转化dot文件至pdf可视化决策树:dot -Tpdf iris.dot -o outpu.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值