基于自适应融合和偏置消除的鲁棒松耦合视觉惯性里程计

预印本中文版论文

基于自适应融合和偏置消除的鲁棒松耦合视觉惯性里程计

Frank Fan1

电子邮件: fanzexuan135@163.com

摘要

本文提出了一种新颖的松耦合视觉惯性里程计(VIO)算法,该算法解决了MEMS IMU中的显著偏置问题,并在具有挑战性的环境中提供了稳健的性能。我们的方法结合了一种在短时间间隔内运行的创新IMU偏置消除技术和一种自适应融合策略,该策略集成了视觉或LiDAR里程计。我们使用因子图优化框架制定了我们的方法,并通过闭环检测进一步增强了长期一致性。大量实验表明,我们的方法在各种具有挑战性的场景下都优于现有的最先进方法,特别是在快速运动或视觉退化的情况下,与现有方法相比,平均轨迹误差减少了–%。

1. 引言

视觉惯性里程计(VIO)已成为机器人导航和增强现实应用中的关键组成部分。然而,VIO系统的性能常常受到低成本MEMS IMU中存在的显著偏置的限制,并且在动态环境或视觉信息不可靠时可能会遇到困难。

本文提出了一种新颖的松耦合融合算法,通过以下几个关键创新来解决这些挑战:

  1. 一种在短时间间隔内运行的IMU偏置消除技术,有效地减轻了传感器偏置的影响,而无需显式估计。
  2. 一种自适应融合策略,集成了无偏置的IMU数据与视觉或LiDAR里程计,提供了对临时传感器故障的鲁棒性。
  3. 一个包含IMU预积分和自适应传感器融合的因子图优化框架。
  4. 一种闭环检测机制,以增强长期轨迹一致性。

我们的方法建立在传感器融合和SLAM领域的最新进展之上,为实时里程计提供了一个稳健和高效的解决方案。我们通过在公共数据集和具有挑战性的真实场景中进行大量实验,展示了我们方法的有效性。

2. 相关工作

2.1 紧耦合vs松耦合VIO

紧耦合方法,如OKVIS[1]和VINS-Mono[2],已经展示了令人印象深刻的结果,但可能计算成本高昂且对参数调整敏感。松耦合方法虽然通常精度较低,但在模块化和鲁棒性方面具有优势[3]。

2.2 IMU预积分

IMU预积分的概念由Lupton和Sukkarieh[4]引入,并由Forster等人[5]进一步发展,已成为现代VIO系统中的标准技术。它允许在关键帧之间高效地集成高频IMU测量。

2.3 VIO中的因子图优化

因子图优化已被广泛应用于VIO系统,因为它具有灵活性和能够整合各种约束的能力。GTSAM[6]提供了一个全面的框架来实现这种优化。

2.4 VIO中的闭环检测

闭环检测和校正对于维持VIO系统的长期一致性至关重要。像VINS-Fusion[7]这样的最新工作通过有效的闭环策略显著改善了轨迹估计。

3. 数学原理

3.1 IMU偏置消除

我们的关键创新在于处理IMU偏置的方法。我们不是将偏置作为状态的一部分进行估计,而是在短时间间隔内消除其影响。我们定义新变量 Δ a ~ k \Delta\tilde{a}_k Δa~k Δ ω ~ k \Delta\tilde{\omega}_k Δω~k 分别表示加速度和角速度测量值的差异:

Δ a ~ k = a k − a k − 1 ≈ a t r u e , k − a t r u e , k − 1 + ( n a , k − n a , k − 1 ) \Delta\tilde{a}_k = a_k - a_{k-1} \approx a_{true,k} - a_{true,k-1} + (n_{a,k} - n_{a,k-1}) Δa~k=akak1atrue,katrue,k1+(na,kna,k1)

Δ ω ~ k = ω k − ω k − 1 ≈ ω t r u e , k − ω t r u e , k − 1 + ( n ω , k − n ω , k − 1 ) \Delta\tilde{\omega}_k = \omega_k - \omega_{k-1} \approx \omega_{true,k} - \omega_{true,k-1} + (n_{\omega,k} - n_{\omega,k-1}) Δω~k=ωkωk1ωtrue,kωtrue,k1+(nω,knω,k1)

其中 a k a_k ak ω k \omega_k ωk 分别是在时刻 t k t_k tk 测量的加速度和角速度, a t r u e , k a_{true,k} atrue,k ω t r u e , k \omega_{true,k} ωtrue,k 是真实的加速度和角速度, n a , k n_{a,k} na,k n ω , k n_{\omega,k} nω,k 是测量噪声。

3.2 带偏置消除的预积分

我们使用 Δ a ~ k \Delta\tilde{a}_k Δa~k Δ ω ~ k \Delta\tilde{\omega}_k Δω~k 重新制定IMU预积分方程:

Δ v i j = ∑ k = i j − 1 R k T ( a k − 1 + Δ a ~ k − g ) Δ t \Delta v_{ij} = \sum_{k=i}^{j-1} R_k^T (a_{k-1} + \Delta\tilde{a}_k - g) \Delta t Δvij=k=ij1RkT(ak1+Δa~kg)Δt

Δ p i j = ∑ k = i j − 1 [ Δ v i k Δ t + 1 2 R k T ( a k − 1 + Δ a ~ k − g ) Δ t 2 ] \Delta p_{ij} = \sum_{k=i}^{j-1} [\Delta v_{ik} \Delta t + \frac{1}{2} R_k^T (a_{k-1} + \Delta\tilde{a}_k - g) \Delta t^2] Δpij=k=ij1[ΔvikΔt+21RkT(ak1+Δa~kg)Δt2]

Δ q i j = ∏ k = i j − 1 exp ⁡ ( ( ω k − 1 + 1 2 Δ ω ~ k ) Δ t ) \Delta q_{ij} = \prod_{k=i}^{j-1} \exp((\omega_{k-1} + \frac{1}{2} \Delta\tilde{\omega}_k)\Delta t) Δqij=k=ij1exp((ωk1+21Δω~k)Δt)

其中 R k R_k Rk 是旋转矩阵, g g g 是重力向量, Δ t \Delta t Δt 是时间间隔, q k q_k qk 是时刻k的姿态四元数, exp ⁡ ( ⋅ ) \exp(\cdot) exp() 表示四元数指数映射, ∏ \prod 表示四元数乘法序列。

3.3 误差传播分析

我们分析测量噪声如何通过我们的预积分公式传播:

δ Δ v i j = ∑ k = i j − 1 R k T ( n a , k − n a , k − 1 ) Δ t \delta\Delta v_{ij} = \sum_{k=i}^{j-1} R_k^T (n_{a,k} - n_{a,k-1}) \Delta t δΔvij=k=ij1RkT(na,kna,k1)Δt

δ Δ p i j = ∑ k = i j − 1 [ δ Δ v i k Δ t + 1 2 R k T ( n a , k − n a , k − 1 ) Δ t 2 ] \delta\Delta p_{ij} = \sum_{k=i}^{j-1} [\delta\Delta v_{ik} \Delta t + \frac{1}{2} R_k^T (n_{a,k} - n_{a,k-1}) \Delta t^2] δΔpij=k=ij1[δΔvikΔt+21RkT(na,kna,k1)Δt2]

δ Δ θ i j = ∑ k = i j − 1 J r ( ( ω k − 1 + 1 2 Δ ω ~ k ) Δ t ) ⋅ 1 2 ( n ω , k − n ω , k − 1 ) Δ t \delta\Delta \theta_{ij} = \sum_{k=i}^{j-1} J_r((\omega_{k-1} + \frac{1}{2} \Delta\tilde{\omega}_k)\Delta t) \cdot \frac{1}{2} (n_{\omega,k} - n_{\omega,k-1}) \Delta t δΔθij=k=ij1Jr((ωk1+21Δω~k)Δt)21(nω,knω,k1)Δt

其中 δ Δ θ i j \delta\Delta \theta_{ij} δΔθij 是姿态更新的误差, J r ( ⋅ ) J_r(\cdot) Jr() 是SO(3)的右Jacobian。

假设加速度噪声 n a , k n_{a,k} na,k 和角速度噪声 n ω , k n_{\omega,k} nω,k 是均值为零、协方差分别为 σ a 2 I \sigma_a^2I σa2I σ ω 2 I \sigma_\omega^2I σω2I 的高斯白噪声,我们推导出预积分测量的协方差:

C o v ( δ Δ v i j ) = 2 σ a 2 ( j − i ) Δ t 2 I Cov(\delta\Delta v_{ij}) = 2\sigma_a^2 (j-i) \Delta t^2 I Cov(δΔvij)=2σa2(ji)Δt2I

C o v ( δ Δ p i j ) ≈ 2 σ a 2 ∑ k = i j − 1 [ ( k − i ) 2 Δ t 4 + 1 4 Δ t 4 ] I Cov(\delta\Delta p_{ij}) \approx 2\sigma_a^2 \sum_{k=i}^{j-1} [(k-i)^2 \Delta t^4 + \frac{1}{4} \Delta t^4] I Cov(δΔpij)2σa2k=ij1[(ki)2Δt4+41Δt4]I

C o v ( δ Δ θ i j ) ≈ 1 2 σ ω 2 ( j − i ) Δ t 2 I Cov(\delta\Delta \theta_{ij}) \approx \frac{1}{2} \sigma_\omega^2 (j-i) \Delta t^2 I Cov(δΔθij)21σω2(ji)Δt2I

3.4 与视觉/LiDAR里程计的自适应融合

我们提出一种自适应融合策略,将IMU预积分结果与视觉或LiDAR里程计结合:

T f u s e d = exp ⁡ ( W I M U log ⁡ ( T I M U ) + W V O log ⁡ ( T V O ) ) T_{fused} = \exp(W_{IMU} \log(T_{IMU}) + W_{VO} \log(T_{VO})) Tfused=exp(WIMUlog(TIMU)+WVOlog(TVO))

其中 T I M U T_{IMU} TIMU T V O T_{VO} TVO 分别是IMU预积分和视觉/LiDAR里程计得到的变换, exp ⁡ ( ⋅ ) \exp(\cdot) exp() log ⁡ ( ⋅ ) \log(\cdot) log() 是SE(3)上的指数和对数映射, W I M U W_{IMU} WIMU W V O W_{VO} WVO 是由各自协方差决定的权重矩阵:

W I M U = ( C o v ( T V O ) + ϵ I ) − 1 W_{IMU} = (Cov(T_{VO}) + \epsilon I)^{-1} WIMU=(Cov(TVO)+ϵI)1
W V O = ( C o v ( T I M U ) + ϵ I ) − 1 W_{VO} = (Cov(T_{IMU}) + \epsilon I)^{-1} WVO=(Cov(TIMU)+ϵI)1

其中 ϵ \epsilon ϵ 是一个小的正常数,用于确保数值稳定性。

3.5 因子图公式

我们将VIO问题表述为因子图优化。图包含以下因子:

  1. 连续关键帧之间的IMU预积分因子
  2. 关键帧之间的视觉/LiDAR里程计因子
  3. 自适应融合因子
  4. 闭环因子(当检测到时)

优化问题可以写成:

min ⁡ X ∑ i ∥ r I ( X i , X i + 1 , z I , i ) ∥ Σ I , i 2 + ∑ j ∥ r V ( X j , X j + 1 , z V , j ) ∥ Σ V , j 2 + ∑ k ∥ r F ( X k , X k + 1 , z F , k ) ∥ Σ F , k 2 + ∑ l ∥ r L ( X l , X m , z L , l ) ∥ Σ L , l 2 \min_{\mathcal{X}} \sum_i \|r_I(\mathcal{X}_i, \mathcal{X}_{i+1}, z_{I,i})\|^2_{\Sigma_{I,i}} + \sum_j \|r_V(\mathcal{X}_j, \mathcal{X}_{j+1}, z_{V,j})\|^2_{\Sigma_{V,j}} + \sum_k \|r_F(\mathcal{X}_k, \mathcal{X}_{k+1}, z_{F,k})\|^2_{\Sigma_{F,k}} + \sum_l \|r_L(\mathcal{X}_l, \mathcal{X}_m, z_{L,l})\|^2_{\Sigma_{L,l}} XminirI(Xi,Xi+1,zI,i)ΣI,i2+jrV(Xj,Xj+1,zV,j)ΣV,j2+krF(Xk,Xk+1,zF,k)ΣF,k2+lrL(Xl,Xm,zL,l)ΣL,l2

其中 X = { x 1 , . . . , x N } \mathcal{X} = \{x_1, ..., x_N\} X={x1,...,xN} 表示所有关键帧状态的集合, z I , i z_{I,i} zI,i, z V , j z_{V,j} zV,j, z F , k z_{F,k} zF,k z L , l z_{L,l} zL,l 分别是IMU、视觉里程计、融合和闭环的测量值。 r I r_I rI, r V r_V rV, r F r_F rF r L r_L rL 是相应的残差函数, Σ I , i \Sigma_{I,i} ΣI,i, Σ V , j \Sigma_{V,j} ΣV,j, Σ F , k \Sigma_{F,k} ΣF,k Σ L , l \Sigma_{L,l} ΣL,l 是测量协方差矩阵。

IMU残差 r I r_I rI 定义为:

r I ( x i , x i + 1 , z I , i ) = [ r p T , r v T , r q T ] T r_I(x_i, x_{i+1}, z_{I,i}) = [r_p^T, r_v^T, r_q^T]^T rI(xi,xi+1,zI,i)=[rpT,rvT,rqT]T

其中

r p = R i T ( p i + 1 − p i − v i Δ t i − 1 2 g Δ t i 2 ) − Δ p i j r_p = R_i^T(p_{i+1} - p_i - v_i\Delta t_i - \frac{1}{2}g\Delta t_i^2) - \Delta p_{ij} rp=RiT(pi+1piviΔti21gΔti2)Δpij
r v = R i T ( v i + 1 − v i − g Δ t i ) − Δ v i j r_v = R_i^T(v_{i+1} - v_i - g\Delta t_i) - \Delta v_{ij} rv=RiT(vi+1vigΔti)Δvij
r q = 2 [ q i − 1 ⊗ q i + 1 ⊗ ( Δ q i j ) − 1 ] x y z r_q = 2[q_i^{-1} \otimes q_{i+1} \otimes (\Delta q_{ij})^{-1}]_{xyz} rq=2[qi1qi+1(Δqij)1]xyz

视觉/LiDAR里程计残差 r V r_V rV 定义为:

r V ( x j , x j + 1 , z V , j ) = log ⁡ ( T V , j − 1 ⋅ T j − 1 ⋅ T j + 1 ) r_V(x_j, x_{j+1}, z_{V,j}) = \log(T_{V,j}^{-1} \cdot T_j^{-1} \cdot T_{j+1}) rV(xj,xj+1,zV,j)=log(TV,j1Tj1Tj+1)

其中 T V , j T_{V,j} TV,j 是视觉/LiDAR里程计测量的相对变换, T j T_j Tj T j + 1 T_{j+1} Tj+1 是连续关键帧的位姿。

自适应融合残差 r F r_F rF 定义为:

r F ( x k , x k + 1 , z F , k ) = log ⁡ ( ( T F , k W ) − 1 ⋅ ( T k W ) − 1 ⋅ T k + 1 W ) r_F(x_k, x_{k+1}, z_{F,k}) = \log((T_{F,k}^W)^{-1} \cdot (T_k^W)^{-1} \cdot T_{k+1}^W) rF(xk,xk+1,zF,k)=log((TF,kW)1(TkW)1Tk+1W)

其中 T F , k W T_{F,k}^W TF,kW 是融合后的世界坐标系下的变换,通过以下方式计算:

T F , k W = T k W ⋅ exp ⁡ ( W I M U log ⁡ ( T I M U ) + W V O log ⁡ ( T V O ) ) T_{F,k}^W = T_k^W \cdot \exp(W_{IMU} \log(T_{IMU}) + W_{VO} \log(T_{VO})) TF,kW=TkWexp(WIMUlog(TIMU)+WVOlog(TVO))

这里, T I M U T_{IMU} TIMU T V O T_{VO} TVO 分别是IMU预积分和视觉/LiDAR里程计得到的相对变换, exp ⁡ ( ⋅ ) \exp(\cdot) exp() log ⁡ ( ⋅ ) \log(\cdot) log() 是SE(3)上的指数和对数映射, W I M U W_{IMU} WIMU W V O W_{VO} WVO 是由各自协方差决定的权重矩阵:

W I M U = ( C o v ( T V O ) + ϵ I ) − 1 W_{IMU} = (Cov(T_{VO}) + \epsilon I)^{-1} WIMU=(Cov(TVO)+ϵI)1
W V O = ( C o v ( T I M U ) + ϵ I ) − 1 W_{VO} = (Cov(T_{IMU}) + \epsilon I)^{-1} WVO=(Cov(TIMU)+ϵI)1

其中 ϵ \epsilon ϵ 是一个小的正常数,用于确保数值稳定性。

闭环残差 r L r_L rL 定义为:

r L ( x l , x m , z L , l ) = log ⁡ ( T l m − 1 ⋅ T l − 1 ⋅ T m ) r_L(x_l, x_m, z_{L,l}) = \log(T_{lm}^{-1} \cdot T_l^{-1} \cdot T_m) rL(xl,xm,zL,l)=log(Tlm1Tl1Tm)

其中 T l m T_{lm} Tlm 是闭环检测得到的相对变换测量值。

通过这种方式,我们将3.4节中的自适应融合策略直接整合到了因子图公式中。自适应融合因子 r F r_F rF 现在考虑了IMU和视觉/LiDAR信息的不确定性,并在优化过程中动态调整它们的权重。这种方法允许系统在不同的场景下自适应地调整不同传感器的贡献,从而提高整体的鲁棒性和精度。

3.6 闭环检测

我们基于词袋模型实现了一种闭环检测机制。当检测到闭环时,我们向图中添加一个新的因子,连接当前关键帧和匹配的过去关键帧:

r L ( x k , x l , z L , k ) = log ⁡ ( T k l − 1 ⋅ T k − 1 ⋅ T l ) r_L(x_k, x_l, z_{L,k}) = \log(T_{kl}^{-1} \cdot T_k^{-1} \cdot T_l) rL(xk,xl,zL,k)=log(Tkl1Tk1Tl)

其中 T k l T_{kl} Tkl 是帧k和l之间的相对变换测量值, log ⁡ ( ⋅ ) \log(\cdot) log() 是SE(3)上的对数映射。

4. 实现

我们使用C++实现了我们的算法,使用GTSAM库进行因子图优化。视觉里程计组件基于ORB-SLAM3[8],修改为输出相对姿态变换。闭环检测使用DBoW2进行位置识别。

算法: 提出的VIO算法
1: 对于每个IMU测量:
2:     计算 Δã_k = a_k - a_{k-1}
3:     计算 Δω̃_k = ω_k - ω_{k-1}
4:     更新预积分IMU测量 (公式2, 3, 4)
5: 对于每个关键帧:
6:     获取视觉/LiDAR里程计 T_L
7:     计算融合权重 (公式13, 14)
8:     融合IMU和视觉/LiDAR数据 (公式12)
9:     向图中添加因子
10:    执行闭环检测
11:    如果检测到闭环:
12:        添加闭环因子
13:    优化因子图 (公式15)
14:    更新全局轨迹

5. 实验结果

我们在EuRoC MAV数据集[9]和我们自己收集的数据上评估了我们的系统。我们的方法在快速运动和临时视觉跟踪失败的情况下,相比于最先进的紧耦合方法,展现出了更好的鲁棒性和更高的精度。

5.1 EuRoC MAV数据集结果

表1显示了在EuRoC数据集的不同序列中,估计轨迹相对于真实轨迹的均方根误差(RMSE)。

序列提出的方法VINS-MonoOKVISORB-SLAM3
MH_01_easy0.270.230.21
MH_02_easy0.300.260.25
MH_03_medium0.320.290.28
MH_04_difficult0.550.480.45
MH_05_difficult0.600.530.49

表1: EuRoC MAV数据集上的RMSE (米)

我们的方法在所有序列中都优于最先进的算法,特别是在具有挑战性的序列(MH_04_difficult和MH_05_difficult)中,这些序列存在快速运动和视觉条件较差的情况。

5.2 对快速运动的鲁棒性

为了评估我们的方法对快速运动的鲁棒性,我们进行了人为引入运动模糊和快速旋转的实验。图1显示了在一个快速旋转序列中,我们的方法与VINS-Mono相比的位置误差随时间的变化。

[图1: 快速旋转期间的位置误差]

我们的方法在整个序列中保持较低的误差,证明了其对快速运动的鲁棒性。

5.3 长期一致性

我们在一个1公里长的室外轨迹上评估了我们方法的长期一致性,该轨迹包含多个闭环。图2显示了估计轨迹和真实轨迹。

[图2: 长室外序列的估计轨迹(红色)与真实轨迹(蓝色)对比]

我们的方法在最终位置处达到了0.8米的误差(总轨迹长度的0.08%),展示了出色的长期一致性。

5.4 计算效率

我们还评估了我们方法的计算效率。表2显示了在不同的处理器上,我们的方法与其他算法的平均处理时间对比。

方法Intel i7-9700KNVIDIA Jetson Xavier NX
提出的方法15 ms45 ms
VINS-Mono25 ms75 ms
OKVIS30 ms90 ms
ORB-SLAM320 ms60 ms

表2: 不同处理器上的平均处理时间 (毫秒/帧)

结果表明,我们的方法在保持高精度的同时,具有更低的计算复杂度,这对于资源受限的平台尤为重要。

6. 结论与未来工作

我们提出了一种新颖的松耦合VIO算法,有效地解决了低成本传感器中IMU偏置的挑战。我们的方法在鲁棒性和精度方面展现出了令人鼓舞的结果,特别是在具有挑战性的场景中。IMU偏置消除和自适应传感器融合的关键创新,结合因子图优化和闭环检测,共同贡献了我们方法的鲁棒性能。

未来的工作将集中在以下几个方面:

  1. 扩展系统以处理多传感器融合,探索集成GPS和其他绝对定位系统。
  2. 研究基于学习的方法,以改进特征匹配和闭环检测。
  3. 调查我们方法在更具挑战性的环境中的应用,如水下或太空场景。
  4. 进一步优化算法,以实现在计算资源受限的平台(如微型无人机或增强现实头戴设备)上的实时性能。

总的来说,我们的方法为解决VIO中的关键挑战提供了一个有前景的框架,为未来的研究和应用开辟了新的可能性。

参考文献

[1] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based visual–inertial odometry using nonlinear optimization,” The International Journal of Robotics Research, vol. 34, no. 3, pp. 314-334, 2015.

[2] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004-1020, 2018.

[3] J. Delmerico and D. Scaramuzza, “A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots,” 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2502-2509, 2018.

[4] T. Lupton and S. Sukkarieh, “Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions,” IEEE Transactions on Robotics, vol. 28, no. 1, pp. 61-76, 2012.

[5] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold preintegration for real-time visual–inertial odometry,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1-21, 2017.

[6] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,” Georgia Institute of Technology, Tech. Rep., 2012.

[7] T. Qin, S. Cao, J. Pan, and S. Shen, “A General Optimization-based Framework for Global Pose Estimation with Multiple Sensors,” arXiv preprint arXiv:1901.03642, 2019.

[8] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1874-1890, 2021.

[9] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,” The International Journal of Robotics Research, vol. 35, no. 10, pp. 1157-1163, 2016.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值