计算机视觉与深度学习 | 视觉+激光雷达+惯惯性SLAM算法汇总(原理,公式,代码)

视觉+激光雷达+惯性

  • 1. LVI-SAM(Laser-Visual-Inertial SLAM)
  • 2. MMF-LVINS(Multi-Modal Feature-based LVINS)
  • 3. FAST-LIVO(Fast LiDAR-Inertial-Visual Odometry)
  • 4. CamVox
  • 5. Coco-LIC
  • 6. FAST-LIO2
  • 7. SLICT(Surfel-Based LiDAR-Inertial Mapping)
  • 总结与对比

以下是对视觉(Visual)、激光雷达(LiDAR)和惯性导航(IMU)融合的SLAM算法的汇总,涵盖原理、公式及开源项目链接:


1. LVI-SAM(Laser-Visual-Inertial SLAM)

  • 原理
    由MIT团队开发的紧耦合多传感器融合框架,包含视觉惯导(VIO)和激光惯导(LIO)两个子系统。VIO利用激光雷达提供深度信息,LIO依赖VIO的初始位姿进行点云匹配,两者通过因子图联合优化。当某一子系统失效时,另一系统仍可独立工作,提升鲁棒性。
  • 关键技术
    • 视觉闭环检测优化激光雷达地图。
    • 基于IMU预积分、滑窗优化的紧耦合策略。
  • 公式
    状态估计通过因子图优化,目标函数为:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单北斗SLAMer

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值