计算机视觉与深度学习 | SLAM国内外研究现状

本文概述了计算机视觉与深度学习在SLAM(同时定位与地图构建)领域的研究现状,重点关注视觉SLAM、视觉惯性SLAM以及基于点线特征的SLAM。视觉SLAM通过相机图像实现定位和建图,分为直接法和特征法。视觉惯性SLAM结合视觉传感器和惯性传感器数据,提高定位和地图构建的精度和鲁棒性。基于点线特征的SLAM利用线性结构提高鲁棒性,尤其在纹理缺乏或光照变化的环境中。近年来的研究着重于融合多种传感器数据和优化算法,以实现更高效、准确和鲁棒的SLAM解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 多机器人系统的避障理论 #### 集中式分布式控制策略 在计算机科学和机器人技术领域,多机器人系统中的障碍物规避是一个复杂而重要的研究课题。为了防止碰撞并实现高效导航,通常采用两种主要的控制方法:集中式控制系统和分布式控制系统[^1]。 - **集中式控制**涉及一个中央处理器来协调所有机器人的行动路径规划;这种方法可以提供全局最优解但是存在单点故障风险以及较高的通信需求。 - **分布式控制**则让每个个体自主决策,在局部感知基础上其他成员交换信息完成任务分配及路线调整工作。这种方式提高了灵活性但也带来了同步性和一致性方面的新挑战。 #### 动态环境下的适应机制 当处理动态环境中不断变化的情况时——比如有新的物体突然出现或是原有结构发生改变——就需要引入额外的技术手段以确保安全可靠的操作性能: - 实现对于新加入或离开群体内的单元能够快速响应其状态更新; - 维持稳定有效的网络连接数量以便于实时数据传输; - 设计合理的算法使得整个体系能够在资源受限条件下依旧保持良好运作效率。 #### 视觉引导学习模型的应用 现代视觉传感技术和先进的人工智能算法为解决上述难题提供了强有力的支持工具。例如,“OK-Robot”项目展示了通过集成多种公开训练的数据集所构建的学习模块(如CLIP、Lang-SAM等),可以在杂乱的家庭场景下达到较高成功率的任务执行水平[^3]。这些基于图像识别的能力有助于增强机器人对周围空间的理解力,从而更好地避开潜在危险区域。 ```python def avoid_obstacles(robots, obstacles): """ A simplified function demonstrating multi-robot obstacle avoidance. Args: robots (list): List of robot positions and headings. obstacles (list): List of obstacle positions. Returns: list: Updated directions for each robot to avoid collisions. """ updated_directions = [] for i, bot in enumerate(robots): new_dir = calculate_safe_path(bot, [r for j,r in enumerate(robots) if j != i], obstacles) updated_directions.append(new_dir) return updated_directions def calculate_safe_path(robot, other_robots, obstacles): # Placeholder logic for calculating safe path based on current position, # heading, nearby robots, and detected obstacles. pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单北斗SLAMer

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值