循环神经网络--代码实现

import numpy as np
from functools import reduce

def element_wise_op(array, op):
    for i in np.nditer(array,
                       op_flags=['readwrite']):
        i[...] = op(i)


class ReluActivator(object):
    def forward(self, weighted_input):
        #return weighted_input
        return max(0, weighted_input)

    def backward(self, output):
        return 1 if output > 0 else 0


class IdentityActivator(object):
    def forward(self, weighted_input):
        return weighted_input

    def backward(self, output):
        return 1

class RecurrentLayer(object):
    def __init__(self, input_width, state_width,
                 activator, learning_rate):
        self.input_width = input_width
        self.state_width = state_width
        self.activator = activator
        self.learning_rate = learning_rate
        self.times = 0      
        self.state_list = [] 
        self.state_list.append(np.zeros(
            (state_width, 1)))           
        self.U = np.random.uniform(-1e-4, 1e-4,
            (state_width, input_width))  
        self.W = np.random.uniform(-1e-4, 1e-4,
            (state_width, state_width)) 

    def forward(self, input_array):

        self.times += 1
        state = (np.dot(self.U, input_array) +
                 np.dot(self.W, self.state_list[-1]))
        element_wise_op(state, self.activator.forward)
        self.state_list.append(state)

    def backward(self, sensitivity_array, 
                 activator):

        self.calc_delta(sensitivity_array, activator)
        self.calc_gradient()

    def update(self):

        self.W -= self.learning_rate * self.gradient

    def calc_delta(self, sensitivity_array, activator):
        self.delta_list = []  
        for i in range(self.times):
            self.delta_list.append(np.zeros(
                (self.state_width, 1)))
        self.delta_list.append(sensitivity_array)

        for k in range(self.times - 1, 0, -1):
            self.calc_delta_k(k, activator)

    def calc_delta_k(self, k, activator):

        state = self.state_list[k+1].copy()
        element_wise_op(self.state_list[k+1],
                    activator.backward)
        self.delta_list[k] = np.dot(
            np.dot(self.delta_list[k+1].T, self.W),
            np.diag(state[:,0])).T

    def calc_gradient(self):
        self.gradient_list = [] 
        for t in range(self.times + 1):
            self.gradient_list.append(np.zeros(
                (self.state_width, self.state_width)))
        for t in range(self.times, 0, -1):
            self.calc_gradient_t(t)

        self.gradient = reduce(lambda a, b: a + b, self.gradient_list,
            self.gradient_list[0]) 

    def calc_gradient_t(self, t):

        gradient = np.dot(self.delta_list[t],
            self.state_list[t-1].T)
        self.gradient_list[t] = gradient

    def reset_state(self):
        self.times = 0      
        self.state_list = [] 
        self.state_list.append(np.zeros(
            (self.state_width, 1)))     


def data_set():
    x = [np.array([[1], [2], [3]]),
         np.array([[2], [3], [4]])]
    d = np.array([[1], [2]])
    return x, d


def gradient_check():

    error_function = lambda o: o.sum()

    rl = RecurrentLayer(3, 2, IdentityActivator(), 1e-3)


    x, d = data_set()
    rl.forward(x[0])
    rl.forward(x[1])


    sensitivity_array = np.ones(rl.state_list[-1].shape,
                                dtype=np.float64)

    rl.backward(sensitivity_array, IdentityActivator())


    epsilon = 10e-4
    for i in range(rl.W.shape[0]):
        for j in range(rl.W.shape[1]):
            rl.W[i,j] += epsilon
            rl.reset_state()
            rl.forward(x[0])
            rl.forward(x[1])
            err1 = error_function(rl.state_list[-1])
            rl.W[i,j] -= 2*epsilon
            rl.reset_state()
            rl.forward(x[0])
            rl.forward(x[1])
            err2 = error_function(rl.state_list[-1])
            expect_grad = (err1 - err2) / (2 * epsilon)
            rl.W[i,j] += epsilon
            print ('weights(%d,%d): expected - actural %f - %f' % (
                i, j, expect_grad, rl.gradient[i,j]))


def test():
    l = RecurrentLayer(3, 2, ReluActivator(), 1e-3)
    x, d = data_set()
    l.forward(x[0])
    l.forward(x[1])
    l.backward(d, ReluActivator())
    return l
if __name__ == '__main__':
    test()
    gradient_check()
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
RNN循环神经网络)是一种常用的神经网络结构,用于处理序列数据。在Python中,可以使用深度学习框架如TensorFlow或PyTorch来实现RNN。 以下是一个使用TensorFlow实现RNN的简单示例代码: ```python import tensorflow as tf # 定义RNN模型 class RNNModel(tf.keras.Model): def __init__(self, hidden_units, output_units): super(RNNModel, self).__init__() self.rnn = tf.keras.layers.SimpleRNN(hidden_units, return_sequences=True) self.fc = tf.keras.layers.Dense(output_units) def call(self, inputs): x = self.rnn(inputs) x = self.fc(x) return x # 创建RNN模型实例 hidden_units = 64 output_units = 10 model = RNNModel(hidden_units, output_units) # 定义损失函数和优化器 loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = tf.keras.optimizers.Adam() # 定义训练步骤 @tf.function def train_step(inputs, labels): with tf.GradientTape() as tape: predictions = model(inputs) loss = loss_object(labels, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) return loss # 进行训练 epochs = 10 for epoch in range(epochs): for inputs, labels in train_dataset: loss = train_step(inputs, labels) print('Epoch {} Loss: {:.4f}'.format(epoch+1, loss)) ``` 这段代码中,我们首先定义了一个RNN模型类`RNNModel`,其中使用了`tf.keras.layers.SimpleRNN`层来构建RNN层,并使用`tf.keras.layers.Dense`层作为输出层。然后,我们定义了训练步骤`train_step`,其中使用了`tf.GradientTape`来计算梯度,并使用Adam优化器来更新模型参数。最后,我们进行了多个epoch的训练。 希望以上代码能够帮助到你!如果有任何问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值