1,思想类似于大数的加减乘法.
数组的每个元素维护一个4位数. 类似的大数问题都可以考虑这种思想
2,实例代码:
#include<iostream>
using namespace std;
int a[10000];//保存结果
int m=0;//保存位数
void factorial(int n)
{
memset(a,0,sizeof(a));
a[0]=1;
for(int i=1;i<=n;i++)
{
int c=0; //每次新的i,都要置零
for(int j=0;j<=m;j++)
{
a[j]=a[j]*i+c; //以四位数为单位分别与i进行相乘
c=a[j]/10000; //四位之后的数
a[j]=a[j]%10000; //保留前四位
}
if(c>0)
{
m++; //前进了一个四位
a[m]=c;
}
}
}
int main()
{
factorial(10);
for(int i=m;i>=0;i--)
cout<<a[i];
cout<<endl;
return 0;
}
在Miller Rabbin测试素数,就用到了快速幂取模的思想。这里总结下。
求a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能
求a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能
算法1:利用公式a*b%c=((a%c)*b)%c,这样每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化
代码如下:
代码如下:
- int
modexp_simple(int a,int b,int n) - {
-
int ret = 1; -
while (b--) -
{ -
ret = a * ret % n; -
} -
return ret; - }
算法2:另一种算法利用了二分的思想,可以达到O(logn)。
可以把b按二进制展开为:b = p(n)*2^n + p(n-1)*2^(n-1) +…+ p(1)*2 + p(0)
其中p(i) (0<=i<=n)为 0 或 1
这样 a^b = a^ (p(n)*2^n + p(n-1)*2^(n-1) +...+ p(1)*2 + p(0))
= a^(p(n)*2^n) * a^(p(n-1)*2^(n-1)) *...* a^(p(1)*2) * a^p(0)
对于p(i)=0的情况, a^(p(i) * 2^(i-1) ) = a^0 = 1,不用处理
我们要考虑的仅仅是p(i)=1的情况
化简:a^(2^i) = a^(2^(i-1) * 2) = ( a^( p(i) * 2^(i-1) ) )^2
(这里很重要!!具体请参阅秦九韶算法: http://baike.baidu.com/view/1431260.htm )
可以把b按二进制展开为:b = p(n)*2^n
其中p(i) (0<=i<=n)为 0 或 1
这样 a^b =
对于p(i)=0的情况, a^(p(i) * 2^(i-1)
我们要考虑的仅仅是p(i)=1的情况
化简:a^(2^i)
(这里很重要!!具体请参阅秦九韶算法: http://baike.baidu.com/view/1431260.htm )
利用这一点,我们可以递推地算出所有的a^(2^i)
当然由算法1的结论,我们加上取模运算:
a^(2^i)%c = ( (a^(2^(i-1))%c) * a^(2^(i-1))) %c
于是再把所有满足p(i)=1的a^(2^i)%c按照算法1乘起来再%c就是结果, 即二进制扫描从最高位一直扫描到最低位
当然由算法1的结论,我们加上取模运算:
a^(2^i)%c = ( (a^(2^(i-1))%c) * a^(2^(i-1)))
于是再把所有满足p(i)=1的a^(2^i)%c按照算法1乘起来再%c就是结果,
实例代码:递归
- //计算a^bmodn
- int
modexp_recursion(int a,int b,int n) - {
-
int t = 1; -
-
if (b == 0) -
return 1; -
-
if (b == 1) -
return a%n; -
-
t = modexp_recursion(a, b>>1, n); -
-
t = t*t % n; -
-
if (b&0x1) -
{ -
t = t*a % n; -
} -
-
return t; -
}
实例代码2:非递归优化
- #include
<iostream> - using
namespace std; -
- //计算a^bmodn
- int
modexp(int a,int b,int n) - {
-
int ret=1; -
int tmp=a; -
while(b) -
{ -
//基数存在 -
if(b&0x1) ret=ret*tmp%n; -
tmp=tmp*tmp%n; -
b>>=1; -
} -
return ret; - }
-
- int
main() - {
-
cout<<modexp(2,10,3)<<endl; -
return 0; - }
<span style="font-size:18px;">#include<stdio.h>
#include<string.h>
int main()
{
char a[1000+10],b[1000+10];
int a1[1000+10]={0},b1[1000+10]={0},c[1000+10]={0};
int i,j,k=0,n,t1,t2,max,num=1;
scanf("%d",&n);
while(n--)
{
scanf("%s%s",a,b);
t1 = strlen(a);
t2 = strlen(b);
max=t1>t2?t1:t2;
for(i=t1-1,j=0;i>=0;i--,j++)
a1[j]=a[i]-'0';
for(i=t2-1,j=0;i>=0;i--,j++)
b1[j]=b[i]-'0';
for(i=0,k=0;i<max;i++)
{
c[i]=(a1[i]+b1[i]+k)%10;
k=(a1[i]+b1[i]+k)/10;
}
printf("Case %d:\n",num);
printf("%s + %s = ",a,b);
if(k>0)
printf("%d",k);
for(i=max-1;i>=0;i--)
printf("%d",c[i]);
printf("\n");
num++;
}
return 0;
} </span>