PyTorch深度学习基础之Reduction归约和自动微分操作讲解及实战(附源码 超详细必看)

创作不易 觉得有帮助请点赞关注收藏~~~

一、PyTorch的Reduction操作

Reduction运算的特点是它往往对一个Tensor内的元素做归约操作,比如torch.max找极大值,torch.cumsum计算累加,它还提供了dim参数来指定沿矩阵哪个维度执行操作

测试效果如下

torch.unique用于找出矩阵中出现了哪些元素

 测试代码如下

import  torch
a=torch.tensor([[1,2],[3,4]])
print("全局最大值",torch.max(a))
print(torch.max(a,dim=0))
print("沿着横轴计算每一列的累加",torch.cumsum(a,dim=0))
print("沿着纵轴累计",torch.cumsum(a,dim=1))

a=torch.randint(0,3,(3,3))
print(a)
print(torch.unique(a))

二、PyTorch的自动微分

将Tensor的requires_grad属性设置为True时,PyTorch的torch.autograd会自动地追踪它的计算轨迹,当需要计算微分的时候,只需要对最终计算结果的Tensor调用backward方法,中间所有计算节点的微分就会被保存在grad属性当中了

测试效果如下

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值