机器的这种学习能力,作为人工智能的核心要素,将会对人类社会的生产、生活、军事等活动产生难以估量的影响。
那么,什么是机器学习(Machine Learning,ML)呢? 人类的学习中,最基础的是记忆,即机械的复述。但更重要的是指“举一反三”的能力。当用图片、文字、视频等教人们认识动物时,人们不仅记住了动物的知识,还学会了对真实的动物进行分析、辨认和判别,这是一种学习知识,并应用知识的能力。获得这种能力,并用来解决实际问题,正是机器学习的目标。 这种能力对人类来说并不难,人类的学习能力比现在所有机器学习算法的能力都要强得多。但计算机具有数据存储和处理方面的优势,一旦它具有了这种能力,就可以高效地替代人完成类似工作。比如,从海量的监视视频中找到某个通缉犯。
要使机器具备这种能力,出现过所谓的符号学习(Symbol Learning)和统计学习(Statistical Learning)两类主要方法。符号学习以知识推理为主要工具,在早期推动了机器学习的发展。随着计算能力的大幅度提升,统计学习占据了更多舞台,作出了更多的贡献。现在,人们提到的机器学习,更多的是指统计学习。从统计学习的角度来说,机器学习算法是从现有数据中分析出规律,并利用规律来对未知数据进行预测的算法。机器学习已经发展成为一门多领域交叉的学科,涉及概率论、统计学、微积分、矩阵论、最优化等知识。
机器学习应用流程
一个典型的机器学习应用流程包括采集训练数据、特征工程、建立模型和应用四个主要阶段。