【Python强化学习】蒙特卡洛法讲解及在冰湖问题中实战(图文解释 附源码)

需要源码请点赞关注收藏后评论区留言私信~~~

随机性策略

首先生成一个随机初始化的随机性策略

def create_random_policy(env):
    
    pi = np.ones([env.observation_space.n, env.action_space.n]) # 用数组来存储策略
    p = 1 / env.action_space.n 
    
    return pi * p
pi = create_random_policy(env)
print( pi )

然后按随机性策略进行尝试

def episode_random(env, pi, render = False):
    env.reset()
    if render:    
        env.render()
    episode = []
    done = False
    while not done:
        s = env.env.s # 读取环境状态
        timestep = []
        timestep.append(s)        
        action = np.random.choice(env.action_space.n, p=pi[s])        
        # 执行动作并记录
        next_s, r, done, info = env.step(action)
        timestep.append(action)
        timestep.append(r)
        episode.append(timestep)        
        if render: 
            env.render()
    return episode
tau = episode_random(env, pi, False)
print( tau )

 

 蒙特卡洛法基本思想

在没有环境模型时,在策略评估阶段,用随机近似方法来求值函数的近似值:

动作值函数: Q_π(s,a)=E_π[G_t|S_t=s┤,A_t=a]

求函数f(x)关于 x的分布p(x)的期望E[f(x)]=∫▒p(x)f(x)□dx,可以先依概率p(x)采样x_i,然后根据大数定律用样本均值来近似:

流程图如下 

 

 一次尝试的轨迹如下:

 更新动作值函数:对所有s和a对应的动作值函数重新求均值

主体的轨迹中可能会出现相同的状态值和动作值对(s,a),也就是说,主体在探索时,可能会回到以前的状态并做出与上次相同的动作。如上述示例轨迹中的第1步和第2步。

对重复状态和动作值对(s,a)的处理,有两种方法,分别称为每次访问统计和初次访问统计。

每次访问统计是对每个出现的(s,a)都进行采样用于后续统计。 初次访问统计是只对第一次出现的(s,a)进行采样。

步骤(3)是对每一(s,a),统计它的所有采样的累积折扣回报的均值,即得到动作值函数Q(s,a)的近似估计值。

在统计累积折扣回报的均值时,如果按照保存所有G值再平均的常规方法会占用大量的存储空间,此时,可采用所谓的递增计算均值的方法。

对(s,a)新增的累积折扣回报G,动作值函数Q(s,a)的递增计算式为:

式中,N(s,a)表示已经统计的次数。

使用同策略蒙特卡洛法求解冰湖问题结果如下

部分代码如下

def mc_on_policy(env, epsilon=0.01, n_episodes=100):    
    pi = create_random_policy(env)  # 产生随机策略,数组形式    
    Q_value = np.zeros([env.observation_space.n, env.action_space.n]) 
    N_s_a = np.zeros([env.observation_space.n, env.action_space.n])  
    for k in range(n_episodes):         
        G = 0 # 累积回报
        tau = episode_random(env, pi, False) # 采样得到轨迹τ 
        for i in reversed( range( 0, len(tau) ) ):   
            s_t, a_t, r_t = tau[i] 
            G += r_t 
            if not (s_t, a_t) in [(x[0], x[1]) for x in tau[0:i]]: # 初次访问统计
                N_s_a[s_t, a_t] += 1
                Q_value[s_t, a_t] = Q_value[s_t, a_t] + ( G - Q_value[s_t, a_t] ) / N_s_a[s_t, a_t]        
        for value[s] == np.max(Q_value[s]))
            tag_max_Q = random.choice(indices[0])
            pi[s][tag_max_Q] += 1 - epsilon # 最优动作的增加概率            
    return pi

 创作不易 觉得有帮助请点赞关注收藏~~~

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值