【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

下面对学生成句和表现等数据可视化分析

1:导入模块

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['simhei']
plt.rcParams['font.serif'] = ['simhei']

import warnings
warnings.filterwarnings('ignore')

2:获取数据 并打印前四行

from matplotlib.font_manager import FontProperties
myfont=FontProperties(fname=r'C:\Windows\Fonts\SimHei.ttf',size=12)
sns.set(font=myfont.get_name())
df = pd.read_csv('.\data\StudentPerformance.csv')
df.head(4)

 属性列表对应含义如下

Gender  性别

Nationality  国籍

PlaceofBirth 出生地

Stageid 学校级别

Gradeid 年级

Sectionid  班级

Topic 科目

semester 学期

ralation 孩子家庭教育负责人

raisedhands 学生上课举手的次数

announcementviews 学生浏览在线课件的次数

discussion 学生参与课堂讨论的次数

parentanswersurvey 家长是否填了学校的问卷

parentschoolsatisfaction 家长对于学校的满意度

studentabsencedays         学生缺勤天数

3:数据可视化分析

接下来线修改表列名 换成中文

df.rename(columns={'gender':'性别','NationalITy':'国籍','PlaceofBirth':'出生地',
                   'StageID':'学段','GradeID':'年级','SectionID':'班级','Topic':'科目',
                  'Semester':'学期','Relation':'监管人','raisedhands':'举手次数',
                  'VisITedResources':'浏览课件次数','AnnouncementsView':'浏览公告次数',
                  'Discussion':'讨论次数','ParentAnsweringSurvey':'父母问卷',
                  'ParentschoolSatisfaction':'家长满意度','StudentAbsenceDays':'缺勤次数',
                   'Class':'成绩'},inplace=True)
df.replace({'lowerlevel':'小学','MiddleSchool':'中学','HighSchool':'高中'},inplace=True)
df.columns

 显示学期和学段的取值

然后修改数据

df.replace({'lowerlevel':'小学','MiddleSchool':'中学','HighSchool':'高中'},inplace=True)
df['性别'].replace({'M':'男','F':'女'},inplace=True)
df['学期'].replace({'S':'春季','F':'秋季'},inplace=True)
df.head(4)

 查看空缺数据情况

df.isnull().sum()

查看数据统计情况

 

 然后按成绩绘制计数柱状图

sns.countplot(x = '成绩', order = ['L', 'M', 'H'], data = df, linewidth=2,edgecolor=sns.color_palette("dark",4))

 接着按性别绘制计数柱状图

sns.countplot(x = '性别', order = ['女', '男'],data = df)

 按科目绘制计数柱状图

sns.set_style('whitegrid')
sns.set(rc={'figure.figsize':(16,8)},font=myfont.get_name(),font_scale=1.5)
sns.countplot(x = '科目', data = df)

 按科目绘制不同成绩的计数柱状图

按性别和成绩绘制计数柱状图

sns.countplot(x = '性别', hue = '成绩',data = df, order = ['女', '男'], hue_order = ['L', 'M', 'H'])

按班级查看成绩分布比例

sns.countplot(x = '班级', hue='成绩', data=df, hue_order = ['L','M','H'])
# 从这里可以看出虽然每个班人数较少,但是没有那个班优秀的人数的比例比较突出,这个特征可以删除

 分析4个表现和成绩的相关性

# 了解四个课堂和课后表现与成绩的相关性
fig, axes = plt.subplots(2,2,figsize=(14,10))
sns.barplot(x='成绩', y='浏览课件次数',data=df,order=['L','M','H'],ax=axes[0,0])
sns.barplot(x='成绩', y='浏览公告次数',data=df,order=['L','M','H'],ax=axes[0,1])
sns.barplot(x='成绩', y='举手次数',data=df,order=['L','M','H'],ax=axes[1,0])
sns.barplot(x='成绩', y='讨论次数',data=df,order=['L','M','H'],ax=axes[1,1])
# 在sns.barplot中,默认的计算方式为计算平均值

 分析不同成绩学生的讨论情况

# 了解举手次数与成绩之间的相关性
sns.set(rc={'figure.figsize':(8,6)},font=myfont.get_name(),font_scale=1.5)
sns.boxplot(x='成绩',y='讨论次数',data=df,order=['L','M','H'])

 分析举手次数和参加讨论次数的相关性

# 了解四个课堂后量化表现之间的相关性
# fig,axes = plt.subplots(2,1,figsize=(10,10))
sns.regplot(x='举手次数',y='讨论次数',order =4,data=df)
# sns.regplot(x='浏览公告次数',y='浏览课件次数',order=4,data=df,ax=axes[1])   ,ax=axes[0]

 分析浏览课件次数 举手次数 浏览公告次数 讨论次数之间的相关性

# Correlation Matrix 相关性矩阵
corr = df[['浏览课件次数','举手次数','浏览公告次数','讨论次数']].corr()
corr         

 最后将相关矩阵用热力图可视化显示

# Correlation Matrix Visualization 相关性可视化
sns.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns)

 创作不易 觉得有帮助请点赞关注收藏~~~

  • 89
    点赞
  • 191
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 106
    评论
Python数据分析项目源码主要是基于Python编程语言进行数据处理和分析的项目。这些源码通常包括数据收集、数据清洗、数据可视化、数据建模等步骤。例如,在一个电商数据分析项目中,源码可以包括从网站抓取数据、清洗数据、将数据存储到数据库中、使用Python数据分析库(如Pandas、Numpy等)对数据进行统计和分析、使用数据可视化库(如MatplotlibSeaborn等)进行数据图表展示等。 可视化项目是指使用Python编程语言进行数据可视化的项目。它通常涉及到使用Python可视化库将数据通过图表、图形等形式展示出来,以便更好地理解数据和探索数据中的模式和趋势。例如,在一个销售数据可视化项目中,源码可以包括将销售数据进行处理和准备、使用Python可视化进行销售数据图表展示(如折线图、柱状图等)、添加交互式特性(如鼠标悬停显示详细信息、筛选器等)以增强数据可视化的交互性。 机器学习实战项目案例是指使用Python编程语言实现的机器学习任务的项目。机器学习是一种人工智能的分支,通过设计和构建算法,使计算机能够从数据中学习并自动改进。机器学习实战项目案例可以涉及各种机器学习算法和任务,如分类、回归、聚类、推荐系统等。使用Python的机器学习库(如Scikit-learn、TensorFlow等)可以实现这些机器学习任务。 综上所述,Python数据分析项目源码可视化项目和机器学习实战项目案例都是基于Python编程语言进行数据处理、展示和机器学习的项目。这些项目源码和案例可以帮助人们学习和实践数据分析和机器学习的知识和技能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 106
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值