考研高数之无穷级数题型三:将函数展开成幂级数和傅里叶级数(题目讲解)

文章探讨了无穷级数中的幂级数和傅里叶级数展开,指出展开的目的在于去除信息冗余,实现函数的特征提取。幂级数用于将函数表示为系数和指数的形式,而傅里叶级数则适用于周期函数的逼近。在处理傅里叶级数时,识别函数的奇偶性可以简化计算。文章强调了展开过程作为无失真采样的本质,并与线性代数中的向量分解相类比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在无穷级数这一章中,值得注意的有幂级数和傅里叶级数两种,使用它们的目的分别是将分数展开成幂级数和三角函数

在写题之前我们最好先明确一下为什么要进行展开,这样有助于理解

进行展开是为了去除信息冗余,完成特征提取

当连续的函数被幂级数展开式所表示

不同的函数之间的区别就仅存在于展开式中每一项的系数

于是一个连续函数的性质就完全由一串离散的可列数字所决定

也就是说,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值