前言
本文继续函数项级数的讨论,转而介绍两种重要的函数项级数类型——幂级数与傅里叶级数,这部分最重要的就是关于级数的展开与讨论,在试题的设计过程中,更多的是考察关于某一具体函数的展开问题,因此在实际复习过程中,应该增加对于相关计算的练习,尤其是关于傅里叶系数的计算。
幂级数
关于幂级数的考察,要注意理解收敛半径、收敛区间、收敛域等基本概念,掌握计算收敛半径的方法,其次要掌握幂级数的相关性质。在计算问题上,要注意着重掌握函数的幂级数展开,学习并熟悉泰勒级数,同时掌握基本的初等函数的幂级数展开式。
傅里叶级数
关于傅里叶级数的考察,更多的也是计算问题的考察,在复习过程中应该注意首先以2Π为周期的函数作为起始讨论点开始分析,进而将周期为2Π的条件放宽至周期为2l,无论是哪种,其核心都是在于对傅里叶系数的计算,在计算过程中,要注意充分利用积分计算技巧。此外,本部分还应该注意学习奇延拓与偶延拓,学习如何将函数进行延拓变为正弦级数以及余弦级数。