深度学习入门 ---softmax回归


该算法的Python实现,可以查看 深度学习入门—softmax回归 Python实现。本文论述算法原理


Softmax可以理解为logistic在多类上的扩展。模型如下:

假设我们拥有数据: x(i),y(i),m=0,1,2,... ,此时我们对每一样本,都有假设:
这里写图片描述

其中 θ1,θ2,,θkRn+1 是模型的参数。请注意 1kj=1eθTjx(i) 这一项对概率分布进行归一化,使得所有概率之和为 1 。

为了方便起见,我们同样使用符号 θ 来表示全部的模型参数。在实现Softmax回归时,将 θ 用一个 k×(n+1) 的矩阵来表示会很方便,该矩阵是将 θ1,θ2,,θk 按行罗列起来得到的,如下所示:
这里写图片描述

接下来是代价函数:

首先,先认识一个这样的符号:这里写图片描述
这符号是示性函数。

1{}=1

1{}=0

代价函数表达如下:
这里写图片描述

目前,对于 J(θ) 的最小化问题,目前还没有闭式解法。因此,我们使用迭代的优化算法(例如梯度下降法,或 L-BFGS)。经过求导,我们得到梯度公式如下:

这里写图片描述

θjJ(θ) 本身是一个向量,它的第 lJ(θ)θjl J(θ)θj 的第 l 个分量的偏导数。

有了上面的偏导数公式以后,我们就可以将它代入到梯度下降法等算法中,来最小化 J(θ) 。 例如,在梯度下降法的标准实现中,每一次迭代需要进行如下更新: θj:=θjαθjJ(θ)(j=1,,k
当实现 softmax 回归算法时, 我们通常会使用上述代价函数的一个改进版本。具体来说,就是和权重衰减(weight decay)一起使用。我们接下来介绍它的细节。


权重衰减

我们通过添加一个权重衰减项 λ2ki=1nj=0θ2ij 来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:
这里写图片描述

有了这个权重衰减项以后 (λ>0) ,代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为 J(θ) 是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。

为了使用优化算法,我们需要求得这个新函数 J(θ) 的导数,如下:

这里写图片描述


梯度检验

在完成代价函数偏导数 θjJ(θ) 的求导后,我们最好验证一下该求导结果是否正确。如果计算错误,我们能够直接判断我们的代码出现了问题。

梯度检验主要利用下面一条式子:
这里写图片描述

转换为:

这里写图片描述

如果能验证到
这里写图片描述

则求导结果是正确的

上式两端值的接近程度取决于 J 的具体形式。但是在假定 EPSILON=104 的情况下,你通常会发现上式左右两端至少有4位有效数字是一样的(通常会更多)。

但要注意的是, θ 一般情况下都是向量,这时候再具体代码实现时,要注意。

假设我们有一个用于计算 θiJ(θ)gi(θ) ;我们想要检验 gi 是否输出正确的求导结果。我们定义 θ(i+)=θ+EPSILON×e⃗ i ,其中
这里写图片描述

是第 i 个基向量(维度和 θ 相同,在第
i 行是 1 而其他行是 0 。所以, θ(i+) θ 几乎相同,除了第 i 行元素增加了 EPSILON 。类似地, θ(i)=θEPSILON×e⃗ i 得到的第 i 行减小了 EPSILON 然后我们可以对每个 i 检查下式是否成立,进而验证 gi(θ) 的正确性:

这里写图片描述

下面给出梯度检查的代码。如果我们想检查参数的梯度是否正确,我们需要以下几个步骤:

首先使用一个或多个样本对算法进行训练,这样就能获得每个权重的梯度。
wij 加上一个很小的值(),重新计算神经网络在这个样本下的 wij
wij 减上一个很小的值(),重新计算神经网络在这个样本下的 wij
根据检验公式计算出期望的梯度值,和第一步获得的梯度值进行比较,它们应该几乎相等(至少4位有效数字相同)。


Softmax 回归 vs. k 个二元分类器

如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值