深度学习之Softmax回归

Softmax虽然是回归但本质是一个多分类

回归 vs. 分类

        回归(估计一个连续值)

  • 单连续数值输出
  • 自然区间R
  • 跟真实的区别作为损失

        分类(预测一个离散类别)

  • 通常多个输出
  • 输出i是预测为第i类的置信度

从回归到多分类

        均方损失

  • 对类别进行一位有效编码(one-hot编码)

        例如:类别有0,1,2;编码则是0 == 100,1 == 010, 2 == 001

        

  •  使用均方损失训练
  • 最大值作为预测(类别中置信度最高的)

  • 需要更置信的识别正确类(大余量)

\small O_{y} \gg O_{i}正确类别的置信度要远远大于其它类别的置信度

  •  输出匹配概率(非负,和为1)

低为e的指数实现了非负,

  • 概率y和\small \hat{y}的区别作为损失

    • 衡量区别

损失函数

        均方损失

        绝对值损失函数

Huber's Robust loss

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值