Softmax虽然是回归但本质是一个多分类
回归 vs. 分类
回归(估计一个连续值)
- 单连续数值输出
- 自然区间R
- 跟真实的区别作为损失
分类(预测一个离散类别)
- 通常多个输出
- 输出i是预测为第i类的置信度
从回归到多分类
均方损失
- 对类别进行一位有效编码(one-hot编码)
例如:类别有0,1,2;编码则是0 == 100,1 == 010, 2 == 001
- 使用均方损失训练
- 最大值作为预测(类别中置信度最高的)
- 需要更置信的识别正确类(大余量)
正确类别的置信度要远远大于其它类别的置信度
- 输出匹配概率(非负,和为1)
低为e的指数实现了非负,
- 概率y和的区别作为损失
- 衡量区别
损失函数
均方损失
绝对值损失函数
Huber's Robust loss