如何评价吴恩达的学术地位
吴恩达(AndrewNg),斯坦福计算机系的副教授,师从机器学习的大师级人物MichaelI.Jordan。
同门师兄弟包括ZoubinGhahramani,TommiJaakkola,EricXing,DavidBlei,徒子徒孙遍布美国名校,他们这一大学派的主要研究和贡献集中在统计机器学习(StatisticalMachineLearning)和图模型(ProbabilisticGraphicalmodel),具体的比如Spectralclustering,NonparametricBayesianMethods,VariationalMethods等等。
现在图模型和NonparametricBayesianMethods都是机器学习领域炙手可热的研究方向。
MichaelJordan的研究很好的将统计和机器学习联系了起来,将VariationalMethods发扬光大,他也还身兼统计系和计算机系教职。
吴恩达的学术研究兴趣比较广,做的东西有比较理论的,但更多的是理论和应用的结合。
他的一作主要集中在SpectralClustering,UnsupervisedLearning和增强式学习(reinforcementlearning),机器学习的很多方面都有涉及,比如featureselection,over-fitting,policysearch。
由于做reinforcementlearning和unsupervisedlearning,所以有很多项目是和机器人有关的,他也发起了ROS(RobotOperatingSystem),一个开源的机器人操作系统,影响力很大。
其他的参与的研究就很多了,MichaelJordan那一片的统计机器学习都有参与,在图模型领域也有很多非常优秀论文,比如自然语言处理(NLP)的神器LatentDirchirelntAllocation(LDA)那篇论文他也有贡献。
他现在的研究兴趣主要是深度学习(DeepLearning),深度学习说白了就是死灰复燃的神经网络(NeuralNetwork),神经网络的一代鼻祖是多伦多大学的GeoffreyHinton。
GeoffreyHinton和吴恩达一起在Google搞深度学习(GoogleBrainProject),他们俩现在在这一块的论文很多,影响力很大。
总体而言他是顶级的机器学习研究者,在斯坦福是tenuredprofessor已经说明了这点,至于LabDirector,和学术无关,只要是教授都可以成立一个实验室自己当主任(Director),不要把主任拿过来说事。
更重要的是,他在学术圈内圈外知名度很高!
除了师承之外,还有一个重要原因是他在斯坦福公开课里面主讲机器学习,讲的的确是非常好,在工程界非常受欢迎,后来和DaphneKoller(机器学习界的一姐和大牛,《ProbabilisticGraphicalModels:PrinciplesandTechniques》一书的作者)一起成立了Coursera。
吴恩达对慕课(MOOC)和Coursera的贡献我就不赘述了。
另外吴恩达会说中文,出生于英国,高中毕业于新加坡的RafflesInsitution,本科毕业于卡耐基梅隆大学,硕士在麻省理工,博士毕业于伯克利,早年在香港和英国生活过。
谷歌人工智能写作项目:神经网络伪原创
人工智能,机器学习,深度学习,到底有何区别
有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分好文案。这些评价可以说都是正确的,就看你指的是哪一种人工智能。
今年早些时候,GoogleDeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。
在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machinelearning)和深度学习(deeplearning)都用上了。
这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。
如上图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。五十年代,人工智能曾一度被极为看好。
之后,人工智能的一些较小的子集发展了起来。先是机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大的影响。
从概念的提出到走向繁荣1956年,几个计算机科学家相聚在达特茅斯会议(DartmouthConferences),提出了“人工智能”的概念。
其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言;或者被当成技术疯子的狂想扔到垃圾堆里。
坦白说,直到2012年之前,这两种声音还在同时存在。过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。
当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。
让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点苗头,发展到能够支撑那些每天被数亿用户使用的应用的。
| 人工智能(ArtificialIntelligence)——为机器赋予人的智能早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。
这就是我们现在所说的“强人工智能”(GeneralAI)。这个无所不能的机器,它有着我们所有的感知(甚至比人更多),我们所有的理性,可以像我们一样思考。
人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能现在还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。
我们目前能实现的,一般被称为“弱人工智能”(NarrowAI)。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者Facebook的人脸识别。
这些是弱人工智能在实践中的例子。这些技术实现的是人类智能的一些具体的局部。但它们是如何实现的?这种智能是从何而来?这就带我们来到同心圆的里面一层,机器学习。
| 机器学习——一种实现人工智能的方法机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。
与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。机器学习直接来源于早期的人工智能领域。
传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。
机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。
人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。
使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。这个结果还算不错,但并不是那种能让人为之一振的成功。
特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么前一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。
随着时间的推进,学习算法的发展改变了一切。
| 深度学习——一种实现机器学习的技术人工神经网络(ArtificialNeuralNetworks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。
神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。
例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。
每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。我们仍以停止(Stop)标志牌为例。
将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。
神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。
这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。
即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。
主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。
不过,还是有一些虔诚的研究团队,以多伦多大学