人体的神经系统图 分布,神经系统分布图解说图

本文详细介绍了人体神经系统的分布和结构,包括手指神经分布、神经元的组成、神经纤维的概念,以及中枢和周围神经系统的功能。同时,探讨了神经元在反射中的作用,解释了反射弧的组成部分。此外,还讨论了神经系统的组成,如大脑、小脑、脑干和脊髓的功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

手指神经分布示意图

(1)神经元的基本结构包括细胞体和突起两部分.神经元的突起一般包括一条长而分支少的轴突和数条短而呈树枝状分支的树突,轴突以及套在外面的髓鞘叫神经纤维,神经纤维末端的细小分支叫神经末梢,神经末梢分布在全身各处;图中1是细胞核、2是细胞体、3是突起、4是神经纤维、5是神经末梢. (2)当手指扎到钉子时,[A]感受器接受“痛”的刺激后,产生神经冲动,神经冲动由[B]传入神经传到脊髓中特定的[E]神经中枢,E中的神经元接受了“痛”这一信号后,立刻产生神经冲动,并将它传给[C]传出神经,再由C传给[D]效应器,D对“痛”这一刺激作出缩回手指的反应.在完成上述反射的同时,脊髓中通向大脑的神经元还会将冲动传到大脑,使人感到疼痛,不过由于传向大脑的路径较长,在大脑做出判断之前,手指已经缩回了,这种反射是生来就有的,属于简单反射,其意义是避免手指(身体)受到较重伤害. (3)轴突以及套在外面的髓鞘叫神经纤维,许多神经纤维集结成束,外面包着由结缔组织形成的膜,就成为一条神经.图二中的B传入神经和C传出神经就是图一中的[4]神经纤维集结成束,外面包膜构成的. 神经系统由脑、脊髓和它们所发出的神经组成,脑和脊髓是神经系统的中枢部分,叫中枢神经系统;由脑发出的脑神经和由脊髓发出的脊神经是神经系统的周围部分,叫周围神经系统.因此图二中B传入神经和C传出神经属于周围神经系统. (4)观察图二可知:构成该反射弧的神经元有三个:位于传入神经一个、位于神经中枢两个. 故答案为:(1)细胞体;突起;细胞核;神经纤维;神经末梢 (2)感受器;传入神经;神经中枢;传出神经;效应器;避免手指(身体)受到较重伤害 (3)[4]神经纤维;周围 (4)三。

谷歌人工智能写作项目:神经网络伪原创

人体神经系统的各部分名称

### 计算机视觉中的半监督学习 #### 方法 半监督学习结合了有标签和无标签的数据来改进模型性能。在计算机视觉领域,这种方法特别有用,因为获取大量标注像的成本很高。一种常用的方法是通过一致性正则化,在不同增强版本的同一张片上强制模型给出相似的结果[^2]。 另一种有效的方式是在特征空间中利用聚类算法找到自然存在的结构,并假设来自相同簇的数据应该具有相同的标签。这可以通过引入额外损失项实现,该损失项鼓励属于同一个簇内的样本拥有更接近的表示形式[^3]。 对于卷积神经网络而言,还可以采用伪标签策略——即先用少量带标签样本来预训练一个基础分类器;接着使用此初步得到的模型去预测未标记数据集上的类别分布情况并挑选置信度较高的作为新增加的真实标签加入到已知集合里面继续迭代优化整个过程直到收敛为止[^1]。 ```python import torch.nn as nn from torchvision import models class SemiSupervisedModel(nn.Module): def __init__(self, num_classes=10): super(SemiSupervisedModel, self).__init__() resnet = models.resnet50(pretrained=True) self.backbone = nn.Sequential(*list(resnet.children())[:-1]) self.classifier = nn.Linear(2048, num_classes) def forward(self, x_labeled=None, x_unlabeled=None): if x_labeled is not None: features_labeled = self.backbone(x_labeled).squeeze() logits_labeled = self.classifier(features_labeled) if x_unlabeled is not None: with torch.no_grad(): features_unlabeled_1 = self.backbone(augment(x_unlabeled)).squeeze() features_unlabeled_2 = self.backbone(augment(x_unlabeled)).squeeze() return (logits_labeled,) if x_labeled is not None else () ``` #### 应用场景 在实际应用方面,半监督学习可以应用于医疗影像分析、自动驾驶车辆感知系统以及工业缺陷检测等多个领域。例如,在医学成像诊断任务中,由于高质量的手动分割非常耗时费力,因此仅能获得有限数量的专业医生提供的金标准案例用于训练深度学习模型。此时如果能够充分利用那些未经标注但同样重要的病例资料,则有助于提升最终系统的泛化能力和准确性。 另外,在智能交通管理平台建设过程中也经常遇到类似的问题:摄像头采集回来的道路状况视频流虽然海量存在却难以全部人工审核确认每帧画面的具体语义信息。借助于半监督框架下的先进算法就可以自动识别出大部分正常行驶状态而只需针对少数异常情况进行进一步核查处理即可满足日常运营需求。 #### 最新进展 近年来,随着自监督表征学习的发展,研究人员提出了更多创新性的解决方案来解决传统半监督方法中存在的挑战。比如SimCLR提出的对比学习机制能够在不依赖任何显式的类别标签的情况下有效地挖掘大规模原始多模态信号内部蕴含着丰富的上下文关联模式从而为下游特定目标任务提供更好的初始化权重参数设置方案。 此外还有研究探索如何更好地融合弱监督信息(如边界框位置提示)、部分监督设定下(只有少部分实例被赋予完整描述)以及其他类型的辅助知识源(包括但不限于文本说明文档、音频解说词等),使得即使面对极端稀缺甚至完全缺失指导性线索的情形也能构建起具有一定实用价值的目标探测与跟踪能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值