位运算

1.补码

在总结按位运算前,有必要先介绍下补码的知识,我们知道当将一个十进制正整数转换为二进制数的时候,只需要通过除2取余的方法即可,但是怎么将一个十进制的负整数转换为二进制数呢?其实,负数是以补码的形式表示,其转换方式,简单的一句话就是:先按正数转换,然后取反加1。

要将十进制的-10用二进制表示,先将10用二进制表示:
0000 0000 0000 1010
取反:
1111 1111 1111 0101
加1:
1111 1111 1111 0110
所以,-10的二进制表示就是:1111 1111 1111 0110

2.&(位与)

参加运算的两个数,换算为二进制(0、1)后,进行与运算。只有当相应位上的数都是1时,该位才取1,否则该为为0。 将10与-10进行按位与(&)运算: 0000 0000 0000 1010

1111 1111 1111 0110

0000 0000 0000 0010
所以:10 & -10 = 0000 0000 0000 0010
例如:if(a&1) --> if(a%2==1)

3.|(位或)

参加运算的两个数,换算为二进制(0、1)后,进行或运算。只要相应位上存在1,那么该位就取1,均不为1,即为0。 将10与-10进行按位或(|)运算: 0000 0000 0000 1010 1111 1111 1111 0110 ----------------------- 1111 1111 1111 1110

所以:10 | -10 = 1111 1111 1111 1110

4.^(异或)

参加运算的两个数,换算为二进制(0、1)后,进行异或运算。只有当相应位上的数字不相同时,该为才取1,若相同,即为0。 将10与-10进行按位异或(^)运算: 0000 0000 0000 1010 1111 1111 1111 0110

1111 1111 1111 1100
所以:10 ^ -10 = 1111 1111 1111 1100

可以看出,任何数与0异或,结果都是其本身。利用异或还可以实现一个很好的交换算法,用于交换两个数,算法如下:
a = a ^ b;
b = b ^ a;
a = a ^ b;

5.<<(左移)

参加运算的两个数,换算为二进制(0、1)后,进行左移运算,用来将一个数各二进制位全部向左移动若干位。 对10左移2位(就相当于在右边加2个0): 0000 0000 0000 1010

0000 0000 0010 1000
所以:10 << 2 = 0000 0000 0010 1000 = 40

注意,观察可以发现,左移一位的结果就是原值乘2,左移两位的结果就是原值乘4。

6.>>(右移)

参加运算的两个数,换算为二进制(0、1)后,进行右移运算,用来将一个数各二进制位全部向右移动若干位。 对10右移2位(就相当于在左边加2个0): 0000 0000 0000 1010

0000 0000 0000 0010
所以:10 >> 2 = 0000 0000 0000 0010 = 2

注意,观察可以发现,右移一位的结果就是原值除2,左移两位的结果就是原值除4,注意哦,除了以后没有小数位的,都是取整。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值