/*
题目描述:有n条(1<=200,000)竞标信息,每一条有一个竞标人ai和竞标价格bi,一共有q(1<=200,000)个询问,每个
询问当中包含k个数,其中每一个数都代表一个竞标人的编号,意味着这个竞标人此轮不参与竞标。对于每个询问,
输出最终竞标成功的人的编号,并且输出他竞标成功时的价格(如果有多个价格可以成功竞标,那就用最便宜的那个)。
注意,q轮中的k和总值Σk<=200,000
方法:本题的突破点在于Σk <= 200,000,整体思路是每一轮先判断谁会成功竞标,然后再判断他以什么样的价格成功竞标。
维护一个线段树,线段树最底层第i个位置代表第i个人竞标过程中的最大价钱,如果第i个人没有参与竞标那么这个最大价钱
为-INF。每一次询问,将本轮不参加的人在线段树中的值置为-INF,然后找到当前竞标的最大值maxv1,然后通过map等手段找到
这个最大价钱maxv1是由谁开出来的,那么谁就是这轮竞标的胜者winner。然后,将这个胜者在线段树中的位置置为-INF,再找到
线段树中的最大值maxv2,在胜者投出过的所有价钱当中二分查找大于maxv2的最小的投标money,那么这一轮输出的是
winner money
*/
#pragma warning(disable:4786)
#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cmath>
#include<string>
#include<sstream>
#include<bitset>
#define LL long long
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define mem(a,x) memset(a,x,sizeof(a))
#define lson l,m,x<<1
#define rson m+1,r,x<<1|1
using namespace std;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double PI = acos(-1.0);
const double eps=1e-6;
const int maxn = 2e5 + 5;
int t[4 * maxn] , p[maxn] , del[maxn];
map<int , int>mp;
vector<int>v[maxn];
void modify(int pos , int val , int l , int r , int x)
{
if(l == r && l == pos){
t[x] = val;
return ;
}
int m = l + (r - l) /2 ;
if(pos <= m){
modify(pos , val , lson);
}
else{
modify(pos , val , rson);
}
t[x] = max(t[x<<1] , t[x<<1|1]);
}
int main()
{
int n , id , val , q , k , modpos;
scanf("%d",&n);
for(int i =1 ; i<= n; i++){
p[i] = -INF;
}
for(int i =1 ; i <= n; i++){
scanf("%d %d" , &id , &val);
v[id].push_back(val);
p[id] = val;
modify(i,-INF,1,n,1);
}
for(int i = 1 ; i<= n; i++){
modify(i , p[i] , 1 , n, 1);
mp[ p[i] ] = i;
}
scanf("%d", &q);
while(q--){
scanf("%d",&k);
for(int i = 1 ; i <= k ; i++){
scanf("%d" , &del[i]);
modify(del[i] , -INF , 1 , n , 1);
}
int ans = t[1] , smax;
if(ans < 0){
printf("0 0\n");
}
else{
modpos = mp[ans];
modify(modpos , -INF , 1 , n , 1);
smax = t[1];
int pp = lower_bound(v[modpos].begin() , v[modpos].end() , smax ) - v[modpos].begin();
int output = v[modpos][pp];
printf("%d %d\n",modpos , output);
modify(modpos , p[modpos] , 1 , n , 1);
}
for(int i = 1 ; i <= k ; i++){
modify(del[i] , p[del[i]] , 1 , n , 1);
}
}
return 0;
}
codeforces div2 round388 D Voting 线段树
最新推荐文章于 2024-10-21 16:28:31 发布