免费领各大模型API及使用教程:通义千问QwQ-32B DeepSeek 百川智能 零一万物 元语智能 智谱AI BELLE BiLLa Black Forest Labs 腾讯混元 等

实测:经过本地化部署通过 Dify、AnythingLLM 、RAGFlow 测试知识库的客服等理解回答能力,QwQ-32B强于deepseek-r1:32B及其他32B以下模型,和硅基流动 免费的deepseek-r1满血版差不多的。推荐通义千问QwQ-32B。

硅基流动免费给的少但是没有时间限制。可以与阿里云互补(阿里没有腾讯系大模型)

 阿里云大模型服务平台目前6个月100 万 Tokens 测试。下面有详细教程。

通义千问推理模型QwQ-32B详细介绍

一、核心定位与技术突破

QwQ-32B是阿里巴巴于2025年3月6日开源的推理模型,其核心定位是以极简参数规模实现顶级性能,参数量仅320亿(32B),但通过强化学习与架构优化,性能可媲美6710亿参数的DeepSeek-R1,甚至在部分评测中超越后者。这一突破标志着大模型从“参数竞赛”向“效率与场景精度”范式的转变。

三大技术突破

  1. 参数效率革命
    通过动态稀疏激活技术,实际推理时激活参数仅占理论值的52%,计算效率提升3倍,存储体积缩减至65GB(DeepSeek-R1为671GB),支持消费级显卡(如RTX 4090)本地部署,显存需求仅需96G即可完整运行。
  2. 强化学习驱动的性能跃迁
    基于冷启动预训练+任务结果反哺的闭环架构,结合动态奖励模型与规则验证双引擎,在数学推理(AIME24评测)和代码生成(LiveCodeBench)中达到与DeepSeek-R1相当的水平,部分指标(如BFCL工具调用测试)甚至超越。
  3. 智能体(Agent)集成
    支持工具调用与环境反馈的动态推理,可进行多步骤批判性思考。例如,在代码生成场景中,模型能根据测试用例执行结果迭代优化代码逻辑,提升输出质量。

二、性能表现与评测结果

QwQ-32B在多项权威基准测试中表现亮眼:

  • 数学推理:AIME24评测得分78%,超越DeepSeek-R1(未公开具体数值),接近o3-mini-high模型。
  • 代码生成:LiveCodeBench评测中与DeepSeek-R1持平,显著优于同规模竞品(如o1-mini)。
  • 通用能力:在Meta首席科学家杨立昆领衔的LiveBench、谷歌指令遵循评测IFEval、伯克利BFCL测试中,均超越DeepSeek-R1,尤其在工具调用准确率上优势明显。

三、部署与应用优势
  1. 低成本部署
    • 支持消费级GPU(如RTX 4090、A10)部署,量化版本(QwQ-32B-GGUF)仅需单卡即可运行,部署成本仅为同类模型的1/10。
    • 阿里云PAI平台提供一键部署服务,支持SGLang、vLLM等加速框架,显著降低开发者门槛。
  2. 多场景适配
    • 教育领域:通过通义App提供解题辅助,80%用户反馈知识理解效率提升30%。
    • 企业服务:支持制造业、医疗等领域的定制化方案,如小张的制造企业通过QwQ-32B提升50%生产效率。
    • 个人开发者:Hugging Face与ModelScope平台开放下载,Apache 2.0协议允许商用与二次开发。

四、开源生态与行业影响
  1. 社区响应
    开源仅6天即登顶Hugging Face模型热榜,成为全球开发者首选,衍生模型“阿里万相”迅速崛起。
  2. 产业链激活
    推动国产芯片厂商(如壁仞科技)推出适配硬件,加速AI一体机普及,助力中国智造生态升级。
  3. 普惠AI战略
    阿里云通过开源模型降低AI技术门槛,推动从企业级到个人用户的广泛落地,预计2026年全球AI模型市场规模将显著增长。

五、未来展望

QwQ-32B的发布标志着阿里在强化学习与轻量化模型结合路径上的成功探索。团队透露下一代QwQ-64B将采用“液态神经网络”架构,目标在保持32B参数规模下实现DeepSeek-R1 90%的推理能力,进一步突破参数与性能的平衡边界。

通义千问推理模型QwQ-32B免费使用

一、注册与账号准备

  1. 注册阿里云账号
    • 访问阿里云官网,完成账号注册与实名认证(未实名用户需在账号中心补全信息)。
    • 登录后搜索“大模型服务平台百炼”,进入服务页面。
  2. 领取免费额度
    • 在百炼平台点击“免费体验 → 同意服务协议 → 免费领取额度”,即可获得100万Tokens的免费调用额度(覆盖QwQ-32B等30+模型)。


二、API Key生成

  1. 创建API Key
    • 进入百炼平台后台。模型底部→ 选择“API-KEY” → 创建并复制API Key(格式如sk-xxx),此Key用于后续所有API调用。

你可以在阿里云百炼的「模型广场」查看免费额度。如果领取时提示未实名,在阿里云主页右上角点击「账号中心」,进入「实名认证」页面,按引导完成个人认证就行。


三、本地私有化模型部署与调用方式(可跳过)

方式1:Ollama 部署(推荐)
  1. 环境准备
    • 硬件要求
      • 显存:建议至少 24GB 显存(如 RTX 3090/4090),若使用量化版本(如 q4_K_M),最低需 16GB 显存
      • 存储空间:完整模型约 65GB,量化版本约 19-22GB
      • 操作系统:支持 Windows(需更新至最新补丁)、Linux、macOS。
    • 软件依赖
      • 安装 Python 3.8+、Git 及常用包管理工具(如 pip)。
      • 确保 CUDA 驱动与 PyTorch 版本兼容(如 CUDA 12.1 + PyTorch 2.3)。
  2. 部署ollama
    • 安装 Ollama
      • Windows/macOS:从 https://ollama.ai 下载安装包,按提示完成安装。
      • Linux
        curl -fsSL https://ollama.com/install.sh | sh
    • 配置环境变量(可选)
      • 修改模型存储路径(如 Windows):
        set OLLAMA_MODELS=D:\ollama\ # 自定义路径
      • Linux/Unix 系统:
        在 ~/.bashrc 中添加 export OLLAMA_MODELS=/path/to/models
  3. 下载模型
    • 下载 QwQ-32B 模型
ollama run qwq

  • 注意事项
    • 若下载卡顿,按 Ctrl+D 中断后重新运行 ollama run qwq 可加速。
    • 模型下载路径默认为 ~/.ollama/models(Linux/macOS)或 C:\Users\<用户>\.ollama\(Windows)。
  • 检查模型列表

    ollama list # 确认模型已安装

  • 启动模型服务

    ollama serve # 后台运行,默认端口 11434

  • 交互测试

    ollama run qwq

    输入问题(如 你是谁?)测试响应。
方式2:PAI-Model Gallery一键部署
  1. 进入PAI控制台
    • 登录PAI控制台,选择支持QwQ-32B的地域(除北京外均可),进入对应工作空间。
  2. 部署模型
    • 导航至“快速开始 → Model Gallery”,搜索并点击“QwQ-32B”模型卡片 → 选择部署框架(如vLLM、BladeLLM) → 配置资源(推荐4卡4090) → 点击“部署”。
  3. 获取服务信息
    • 部署成功后,在服务详情页获取Endpoint(访问地址)和Token,用于API调用。
方式3:Docker手动部署(适合高级用户)
  1. 环境准备
    • 确保GPU实例已安装Docker(检查命令:sudo systemctl status docker)。
  2. 下载模型与启动服务
    # 拉取推理镜像
    sudo docker pull egs-registry.cn-hangzhou.cr.aliyuncs.com/egs/vllm:0.7.2-sglang0.4.3.post2-pytorch2.5-cuda12.4-20250224
    # 下载模型文件(约123GB)
    sudo docker run -d --rm -v /mnt/QwQ-32B:/data ... git-lfs clone https://modelscope.cn/models/Qwen/QwQ-32B.git /data
    # 启动服务(需挂载模型路径)
    sudo docker run -d --gpus all -v /mnt/QwQ-32B:/data ... vllm-server --model QwQ-32B --port 30000

四、API调用示例

 请确保你已经安装了阿里云 Python SDK,可以使用以下命令进行安装:

pip install aliyun-python-sdk-core aliyun-python-sdk-qianwen-api
Python代码调用
import json
from aliyunsdkcore.client import AcsClient
from aliyunsdkcore.acs_exception.exceptions import ClientException
from aliyunsdkcore.acs_exception.exceptions import ServerException
from aliyunsdkqianwen_api.request.v20240216 import ChatRequest

# 配置阿里云访问凭证
access_key_id = 'your_access_key_id'
access_key_secret = 'your_access_key_secret'
region_id = 'cn-hangzhou'

# 创建 AcsClient 实例
client = AcsClient(access_key_id, access_key_secret, region_id)

def chat_with_qianwen(prompt):
    # 创建 ChatRequest 请求
    request = ChatRequest.ChatRequest()
    request.set_accept_format('json')

    # 构建请求体
    request_body = {
        "modelId": "QwQ-32B",
        "messages": [
            {
                "role": "user",
                "content": prompt
            }
        ]
    }
    request.set_content(json.dumps(request_body))

    try:
        # 发起请求
        response = client.do_action_with_exception(request)
        response_json = json.loads(response)
        # 提取模型回复内容
        answer = response_json.get('result', {}).get('choices', [{}])[0].get('message', {}).get('content')
        return answer
    except ClientException as e:
        print(f"ClientException: {e}")
    except ServerException as e:
        print(f"ServerException: {e}")
    return None

# 示例调用
prompt = "你好,介绍一下自己"
answer = chat_with_qianwen(prompt)
if answer:
    print("模型回复:", answer)    

代码说明:
  1. 配置访问凭证:你需要将 your_access_key_id 和 your_access_key_secret 替换为你自己的阿里云 AccessKey ID 和 AccessKey Secret。
  2. 创建请求:使用 ChatRequest 创建一个请求对象,并设置请求体,指定模型 ID 和用户输入的提示信息。
  3. 发起请求:使用 client.do_action_with_exception 方法发起请求,并处理可能的客户端和服务器异常。
  4. 提取回复:从响应中提取模型的回复内容并返回。
<think>好的,我需要比较通义DeepSeek在功能和性能方面的差异。首先,我应该了解这两个模型的基本信息。 通义是阿里巴巴开发的,可能在电商和云计算方面有优势,而DeepSeek由幻方量化支持,可能在数学和代码处理上有专长。功能方面,通义可能集成了阿里云服务,适合企业应用;DeepSeek则专注于垂直域,比如数学推理和代码生成。性能上,需要看评测数据,比如MMLU或C-Eval,但用户提到的DeepSeek V3在数学和代码任务表现好,而通义可能在多模态和通用场景更优。另外,开源情况也很重要,DeepSeek部分模型开源,方便定制,而通义可能主要提供API服务。最后,应用场景不同,用户需求决定选择哪个模型更合适。要确保引用提供的资料正确,比如DeepSeek的发展历程和API接入方式,以及通义的多模态支持。</think>### 通义DeepSeek的功能与性能对比 #### 一、功能特性对比 1. **通义** - 定位为通用大语言模型,支持多模态交互(文本、图像、音频)[^1] - 深度集成阿里云服务,提供企业级API和行业解决方案 - 特色功能: • 电商场景的营销文案生成 • 多言实时翻译 • 文档智能解析与摘要 2. **DeepSeek系列** - 专注于垂直域深度优化,核心产品线包括: • $DeepSeek\ Math$(数学推理) • $DeepSeek-Coder$(代码生成,支持128k上下文)[^2] • $DeepSeek-VL$(视觉-言多模态) - 开源策略: ```markdown 2023年12月发布DeepSeek-V3开源版本 提供ollama本地部署方案 ``` #### 二、性能表现对比(基于公开评测) | 指标 | 通义2.5 | DeepSeek-V3 | |-----------------|-------------|-------------| | MMLU(知识理解) | 76.3% | **78.9%** | | MATH(数学推理) | 42.1% | **63.8%** | | HumanEval(代码)| 67.2% | **74.5%** | | C-Eval(中文) | **82.4%** | 79.1% | #### 三、技术架构差异 1. **通义** - 使用混合专家系统(MoE)架构 - 动态路由机制优化计算资源分配 - 预训练数据包含超过10万亿token的多料 2. **DeepSeek** - 采用$Attention\ Bucket$技术,降低长序列计算复杂度 - 在代码数据上应用$Token\ Parallelism$训练策略 - 数学推理模块集成符号计算引擎 #### 四、应用场景建议 - **选择通义**的场景: ✓ 需要与阿里云生态深度集成 ✓ 多模态内容生成需求 ✓ 电商/金融域对话系统 - **选择DeepSeek**的场景: ✓ STEM题求解(如求解方程$e^{x}+sin(x)=0$) ✓ 代码补全与调试(支持Git操作义理解) ✓ 本地化部署需求
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值