扩展堆栈(stack) O(1) 时间访问栈中最小值(或最大值)

本文介绍如何扩展栈数据结构,使其在O(1)时间复杂度内实现push、pop操作以及访问最小值。通过使用双栈策略,一个栈存储数据,另一个栈维护最小值,确保最小值的更新和查找效率。详细介绍了扩展栈的C++实现及其测试案例。
摘要由CSDN通过智能技术生成

问题描述:扩展stack的实现,完成正常的push,pop操作,新增访问最小(或最大)元素的接口Min(),使得push,pop,Min的时间复杂度都是O(1)。

问题分析:拿到这道题,我们最先的思考往往是,设计一个算法从栈中拿到最小值,所以开始考虑任何可以用来实现该功能的排序和查找算法。假设栈中有n个元素,一切排序和查找都不可能实现O(1)的时间复杂度找到最小值。

再看题目,既然是扩展stack的实现,stack是一种数据结构,一种数据的组织方式,扩展它,也就允许我们对其数据组织方式和存储内容作一些改变吧。所以我们就有了下面的思路:

把当前最小值存起来,并且在进行push和pop操作的时维护它。维护要求如下:

1、如果有比当前最小值大的元素入栈,当前最小值不变

2、如果有比当前最小值大的元素入栈,当前最小值变为新加入元素(考虑一下等于的时候啊,呵呵)

3、如果有比当前最小值大的元素出栈,当前最小值不变(注意:弹出的操作时,一定不可能弹出比当前最小值还小的元素,也就是说如果你弹出了一个比当前最小值还小的元素,就证明你的那个当前最小值不是当前最小值)

4、如果有和当前最小值的元素相同出栈,当前最小值变为当前当前最小值入栈之前那个最小值,当前最小值退出。

综上,我们发现一个规律:对于最小值而言,如果有更小的数入栈,需要将其保存为当前最小,如果当前最小数出栈,当前最小数变成

当前最小数入栈之前那个最小数,所

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值