本题思路 : 我们可以将本题所求的问题先转化一下,可以将其转化成放下这些奖杯和奖章至少需要 k k k 个柜子,然后我们把至少需要的 k k k 个柜子与现有的 n n n 个柜子进行比较。
如果 k > n k > n k>n,那么这 n n n 个柜子不能放下这些奖杯和奖章;否则,这 n n n 个柜子能放下这些奖杯和奖章。这样就从而解决了本题所要求的问题。
注意 : 在求放下这些奖杯和奖章至少需要 k k k 个柜子的时候,奖杯数不一定是 5 5 5 的倍数,奖章数也是一样的。
以下对其情况进行判断 :
-
如果奖杯数是 5 5 5 的倍数, k k k 加上 x ÷ 5 x \div 5 x÷5 的值。
-
如果奖杯数不是 5 5 5 的倍数, k k k 加上 x ÷ 5 + 1 x \div 5 + 1 x÷5+1 的值。
-
如果奖章数是 10 10 10 的倍数, k k k 加上 y ÷ 10 y \div 10 y÷10 的值。
-
如果奖章数不是 10 10 10 的倍数, k k k 加上 y ÷ 10 + 1 y \div 10 + 1 y÷10+1 的值。
(注 : x x x 指总奖杯数, y y y 指总奖章数)
参考代码 :
#include <iostream>
#include <cstdio>
using namespace std;
int n;
int a, b, c;//一等奖奖杯个数,二等奖奖杯个数,三等奖奖杯个数
int d, e, f;//一等奖奖章个数,二等奖奖章个数,三等奖奖章个数
int k = 0;
int main()
{
scanf("%d %d %d", &a, &b, &c);
scanf("%d %d %d", &d, &e, &f);
scanf("%d", &n);
int x, y;
x = a + b + c;//总奖杯数
y = d + e + f;//总奖章数
if(x % 5 != 0) k += x / 5 + 1;//情况2
else k += x / 5;//情况1
if(y % 10 != 0) k += y / 10 + 1;//情况4
else k += y / 10;//情况3
if(k > n) printf("NO\n");
else printf("YES\n");
return 0;
}