Hal Burch conducted an analysis over spring break of 1999 and made an amazing discovery: there are only 16 types of programming contest problems! Furthermore, the top several comprise almost 80% of the problems seen at the IOI. Here they are:
Dynamic Programming
Greedy
Complete Search
Flood Fill
Shortest Path
Recursive Search Techniques
Minimum Spanning Tree
Knapsack
Computational Geometry
Network Flow
Eulerian Path
Two-Dimensional Convex Hull
BigNums
Heuristic Search
Approximate Search
Ad Hoc Problems
The most challenging problems are Combination Problems which involve a loop (combinations, subsets, etc.) around one of the above algorithms - or even a loop of one algorithm with another inside it. These seem extraordinarily tricky to get right, even though conceptually they are ``obvious''.
Dynamic Programming
Greedy
Complete Search
Flood Fill
Shortest Path
Recursive Search Techniques
Minimum Spanning Tree
Knapsack
Computational Geometry
Network Flow
Eulerian Path
Two-Dimensional Convex Hull
BigNums
Heuristic Search
Approximate Search
Ad Hoc Problems
The most challenging problems are Combination Problems which involve a loop (combinations, subsets, etc.) around one of the above algorithms - or even a loop of one algorithm with another inside it. These seem extraordinarily tricky to get right, even though conceptually they are ``obvious''.
If you can master solving just 40% of these problem types, you can almost guarantee a silver medal at the IOI. Mastering 80% moves you into the gold range almost for sure. Of course, `mastery' is a tough nut to crack! We'll be supplying a plethora of problems so that you can hone your skills in the quest for international fame.
动态规划
贪心
搜索
洪水填充
最短路径
递归搜索技术
最小生成树
背包
计算几何
网络流
欧拉路径
二维凸包
大数运算
启发式搜索
约搜索