m多元函数微分学

多元函数微分学

请添加图片描述

多元函数的概念

基本概念
  1. 二元函数
    设 D 为一平面点集,对于 D 内任意一点 (x, y),变量 z 按一定的规律都有唯一确定的值与之对应,则称变量 z 是变量 x,y的二元函数,记为
    z = f ( x , y ) 或 z = z ( x , y ) z = f(x, y) 或 z = z(x,y) z=f(x,y)z=z(x,y)
  2. 二元函数的几何意义
    二元函数 z = f(x, y) 在空间直角坐标系中一般表示一个空间曲面。
二元函数的极限与连续
  1. 二元函数的极限
    设函数 z = (x, y) 在点 P0 (x0, y0 ) 的某邻域内有定义(点 P0 (x0, y0 ) 可以除外),如果当点 P(x,y)(属于该邻域)以任意方式趋向于点 P0 (x0, y0) 时,对应的函数值f(x, y) 趋向于一个去确定的常数 A,则称 A 是函数z = f(x, y) 当 P(x,y) → P0(x,y) 时的极限,记为
    lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A 或 lim ⁡ y → y 0 x → x 0 f ( x , y ) = A . \lim _ { ( x , y ) \rightarrow ( x _ { 0 } , y _ { 0 } ) } f ( x , y ) = A 或 \lim _ { \stackrel { x \rightarrow x _ { 0 } } { y \rightarrow y _ { 0 } } } f ( x , y ) = A . (x,y)(x0,y0)limf(x,y)=Ayy0xx0limf(x,y)=A.
  2. 二元函数的连续性
    设 z = f(x, y) 在点 P0 (x0, y0 的某邻域内有定义,当自变量 x 从 x0 变到 x0 + △x,y从 y0 变到 y0 + △y 时,函数的相应增量为 △z = f(x0 + △x, y0 + △y) - f(x0, y0) ,如果当△x→0,△y→0 时,有△z → 0,则称函数z = f(x, y) 在点 (x0, y0) 连续。否则,不连续。我们称 △z 是二元函数 f(x,y) 在点 P0 (x0, y0 处的全增量。
  3. 二元函数连续的充分条件
    ① z = f(x, y) 在点 (x0,y0) 处有定义
    lim x→x0,y→y0 f(x,y) 存在
    ③ 极限值等于函数值,即
    lim ⁡ x → x 0 y → y 0 f ( x , y ) = f ( x 0 , y 0 ) . \lim _ { x \rightarrow x _ { 0 } \atop y \rightarrow y _ { 0 } } f ( x , y ) = f ( x _ { 0 } , y _ { 0 } ) . yy0xx0limf(x,y)=f(x0,y0).

    二元连续函数的和、差、积仍为连续函数,在分母不为零的点处,连续函数的仍为连续函数,二元连续函数的复合函数也是连续函数。

    一切多元初等函数在其定义区域内都是连续的

偏导分与全微分

偏导数的概念

设二元函数 z = f(x, y) 的点 (x0, y0) 的某一领域内有定义,当 y 固定在 y0xx0 处有增量 △x 时,相应的函数有增量 f(x0 + △x, y0) - f(x0, y0) 如果极限
lim ⁡ △ x → 0 f ( x 0 + △ x , y 0 ) − f ( x 0 , y 0 ) △ x \lim _ { \triangle x \rightarrow 0 } \frac { f ( x _ { 0 } + \triangle x , y _ { 0 } ) - f ( x _ { 0 } , y _ { 0 } ) } { \triangle x } x0limxf(x0+x,y0)f(x0,y0)
存在,则称此极限为函数 z = f(x, y) 在点 (x0, y0) 处对 x 的偏导数,记作
∂ z ∂ x ∣ x = x 0 y = y 0 , . ∂ f ∂ x ∣ x = x 0 y = y 0 , z x ∣ x = x 0 y = y 0 或 f x ( x 0 , y 0 ) \frac { \partial z } { \partial x } \mid _ { x = x _ { 0 } \atop y = y _ { 0 } } , . \frac { \partial f } { \partial x } \mid _ { x = x _ { 0 } \atop y = y _ { 0 } } , z _ { x } \mid _ { x = x _ { 0 } \atop y = y _ { 0 } } 或 f _ { x } ( x _ { 0 } , y _ { 0 } ) xzy=y0x=x0,.xfy=y0x=x0,zxy=y0x=x0fx(x0,y0)
类似地,二元函数z = f(x, y) 在点 (x0, y0) 处对 y 的偏导数 定义为
lim ⁡ △ y → 0 f ( x 0 , y 0 + △ y ) − f ( x 0 , y 0 ) △ y \lim _ { \triangle y \rightarrow 0 } \frac { f ( x _ { 0 } , y _ { 0 } + \triangle y ) - f ( x _ { 0 } , y _ { 0 } ) } { \triangle y } y0limyf(x0,y0+y)f(x0,y0)
记作
∂ z ∂ y ∣ x = x 0 y = y 0 , . ∂ f ∂ y ∣ x = x 0 y = y 0 , z y ∣ x = x 0 y = y 0 或 f y ( x 0 , y 0 ) \frac { \partial z } { \partial y } | _ { x = x _ { 0 } \atop y = y _ { 0 } } , . \frac { \partial f } { \partial y } | _ { x = x _ { 0 } \atop y = y _ { 0 } } , z _ { y } | _ { x = x _ { 0 } \atop y = y _ { 0 } } 或 f _ { y } ( x _ { 0 } , y _ { 0 } ) yzy=y0x=x0,.yfy=y0x=x0,zyy=y0x=x0fy(x0,y0)
如果函数 z = f(x, y) 在区域D内每一点(x,y) 处对 x 的偏导数都存在,那么这个偏导数仍是x、y的函数,称为函数 z = f(x, y) 对自变量x 的偏导数,记为
∂ z ∂ x , ∂ f ∂ x , z x 或 f x ( x , y ) . \frac { \partial z } { \partial x } , \frac { \partial f } { \partial x } , z _ { x } 或 f _ { x } ( x , y ) . xz,xf,zxfx(x,y).
在不混淆的情况下,函数 z = f(x, y) 的偏导数函数 əz/əx,əz/əy 也称为一阶偏导数

不难看出,二元函数z = f(x,y) 在点 (x0,y0) 处对 x 的偏导数,就是一元函数 z = f(x, y0)点x0 处的导数;二元函数 z=f(x,y) 在点 (x0, y0) 处对 y 的偏导数,就是一元函数 z = f(x0, y) 在在 点y0 处的导数,可见二元函数求偏导数相当于一元函数求导数,只需在求 x 的偏导数时,将 y 看作常量;再求 y 的偏导数时,将 x 看作常量。

利用一阶偏导数的定义求偏导数是比较麻烦的,一般情况下分段函数在求分段点处的偏导数常用定义去计算,而对于一般的显函数求偏导数则是利用一元函数的求导法则,对谁求偏导,即谁在变(牢记只有一个变量在变),其余变量均视作常熟。

高阶偏导数

二阶偏导数
∂ 2 z ∂ x 2 = ∂ ∂ x ( ∂ z ∂ x ) = f x x ( x , y ) , \frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = \frac { \partial } { \partial x } \left ( \frac { \partial z } { \partial x } \right ) = f _ { x x } ( x , y ) , x22z=x(xz)=fxx(x,y),

∂ 2 z ∂ x ∂ y = ∂ ∂ y ( ∂ z ∂ x ) = f x y ( x , y ) , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial } { \partial y } \left ( \frac { \partial z } { \partial x } \right ) = f _ { x y } ( x , y ) , xy2z=y(xz)=fxy(x,y),

∂ 2 z ∂ y ∂ x = ∂ ∂ x ( ∂ z ∂ y ) = f y x ( x , y ) , \frac { \partial ^ { 2 } z } { \partial y \partial x } = \frac { \partial } { \partial x } \left ( \frac { \partial z } { \partial y } \right ) = f _ { y x } ( x , y ) , yx2z=x(yz)=fyx(x,y),

∂ 2 z ∂ y 2 = ∂ ∂ y ( ∂ z ∂ y ) = f y y ( x , y ) , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = \frac { \partial } { \partial y } \left ( \frac { \partial z } { \partial y } \right ) = f _ { y y } ( x , y ) , y22z=y(yz)=fyy(x,y),

如果两个二阶混合偏导数都在区域D内连续,则在该区域内有
∂ 2 z ∂ x ∂ y = ∂ 2 z ∂ y ∂ x . \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } . xy2z=yx2z.

全微分概念
  1. 全微分的定义
    设函数 z = f(x, y) 在点(x, y) 的某邻域内有定义,若函数在点 (x, y) 处的全增量
    △ z = f ( x + △ x , y + △ y ) − f ( x , y ) \triangle z = f ( x + \triangle x , y + \triangle y ) - f ( x , y ) z=f(x+x,y+y)f(x,y)
    可表示为
    △ z = A △ x + B △ y + o ( ρ ) \triangle z = A \triangle x + B \triangle y + o ( \rho ) z=Ax+By+o(ρ)

    其中 A,B 不依赖于 △x,△y,而仅与 x,y 有关,ρ = √(△x)^2 + (△y)^2,则称函数 z = f(x, y) 在点 (x, y) 处可微分,而 A△x + B△y 称为函数 z = f(x, y) 在点 (x, y) 处的全微分,记作 dz,即
    d z = A △ x + B △ y = A d x + B d y . d z = A \triangle x + B \triangle y = Adx + Bdy. dz=Ax+By=Adx+Bdy.

    (全微分存在的必要条件)如果函数 z = f(x, y) 在点(x, y) 处可微分,则 z = f(x, y) 在点 (x, y) 处的偏导数 əz/əx,əz/əy 必定存在,且全微分为
    d z = ∂ z ∂ x d x + ∂ z ∂ y d y . d z = \frac { \partial z } { \partial x } d x + \frac { \partial z } { \partial y } d y . dz=xzdx+yzdy.
    (全微分存在的充分条件)如果函数 z = f(x, y) 的偏导数 əz/əx,əz/əy 在点 (x, y) 处连续,则 z = f(x, y) 在点 (x, y) 处可微分。

    如果函数 z = f(x, y) 在点 (x0, y0)可微,则函数在该点连续

  2. 全微分的应用–估值计算
    Δ z = f x ( x , y ) Δ x + f y ( x , y ) Δ y + o ( ρ ) , \Delta z = f _ { x } ( x , y ) \Delta x + f _ { y } ( x , y ) \Delta y + o ( \rho ) , Δz=fx(x,y)Δx+fy(x,y)Δy+o(ρ),
    如果舍去 ρ 的高阶无穷小 o(ρ),则可得近似公式
    Δ z ≈ f x ( x , y ) Δ x + f y ( x , y ) Δ y \Delta z \approx f _ { x } ( x , y ) \Delta x + f _ { y } ( x , y ) \Delta y Δzfx(x,y)Δx+fy(x,y)Δy

    f ( x + Δ x , y + Δ y ) ≈ f ( x , y ) + f x ( x , y ) Δ x + f y ( x , y ) Δ y , f ( x + \Delta x , y + \Delta y ) \approx f ( x , y ) + f _ { x } ( x , y ) \Delta x + f _ { y } ( x , y ) \Delta y , f(x+Δx,y+Δy)f(x,y)+fx(x,y)Δx+fy(x,y)Δy,

复合函数的偏导数与全微分
  1. 链式法则
    设函数 u = u(x, y) ,v = v(x, y) 在点(x, y)处有连续偏导数,函数 z = f(u, v) 在对应点 (u, v) 处有连续偏导数,则复合函数 z = f[u(x, y), v(x, y)] 在点 (x, y) 处有对 x 与 y 的连续偏导数,且有下列链式法则:
    ∂ z ∂ x = ∂ z ∂ u ∙ ∂ u ∂ x + ∂ z ∂ v ∙ ∂ v ∂ x , \frac { \partial z } { \partial x } = \frac { \partial z } { \partial u } \bullet \frac { \partial u } { \partial x } + \frac { \partial z } { \partial v } \bullet \frac { \partial v } { \partial x } , xz=uzxu+vzxv,

    ∂ z ∂ y = ∂ z ∂ u ∙ ∂ u ∂ y + ∂ z ∂ v ∙ ∂ v ∂ y . \frac { \partial z } { \partial y } = \frac { \partial z } { \partial u } \bullet \frac { \partial u } { \partial y } + \frac { \partial z } { \partial v } \bullet \frac { \partial v } { \partial y } . yz=uzyu+vzyv.

    “沿线相乘,分线相加”

  2. 特殊情况

    (1)设函数 z = f(u,v,w), u = φ(x, y), v = ψ(x, y), w = ω(x, y),如果函数u = φ(x, y), v = ψ(x, y) 和 w = ω(x, y) 在点 (x, y) 处都有对 x 和对 y 的偏导数,z = f(u, v, w) 在点 (u, v, w) 处具有连续偏导数,则 z = f[φ(x, y), ψ(x, y), ω(x, y)] 在点(x, y) 处的两个偏导数存在,且
    ∂ z ∂ x = ∂ z ∂ u ∙ ∂ u ∂ x + ∂ z ∂ v ∙ ∂ v ∂ x + ∂ z ∂ w ∙ ∂ w ∂ x , \frac { \partial z } { \partial x } = \frac { \partial z } { \partial u } \bullet \frac { \partial u } { \partial x } + \frac { \partial z } { \partial v } \bullet \frac { \partial v } { \partial x } + \frac { \partial z } { \partial w } \bullet \frac { \partial w } { \partial x } , xz=uzxu+vzxv+wzxw,

    ∂ z ∂ y = ∂ z ∂ u ∙ ∂ u ∂ y + ∂ z ∂ v ∙ ∂ v ∂ y + ∂ z ∂ w ∙ ∂ w ∂ y . \frac { \partial z } { \partial y } = \frac { \partial z } { \partial u } \bullet \frac { \partial u } { \partial y } + \frac { \partial z } { \partial v } \bullet \frac { \partial v } { \partial y } + \frac { \partial z } { \partial w } \bullet \frac { \partial w } { \partial y } . yz=uzyu+vzyv+wzyw.

    (2)设函数 z = f(u, v), u = φ(x), v = ψ(x),如果函数 u = φ(x), v = ψ(x) 在点 x 处都可导,z = f(u, v) 在点 (u, v) 处具有连续偏导数,则 z = f[φ(x), ψ(x)] 在点 x 处可导,且
    d z d x = ∂ z ∂ u ⋅ d u d x + ∂ z ∂ v ⋅ d v d x , \frac { d z } { d x } = \frac { \partial z } { \partial u } \cdot \frac { d u } { d x } + \frac { \partial z } { \partial v } \cdot \frac { d v } { d x } , dxdz=uzdxdu+vzdxdv,
    这时 z 对 x 的导数叫作全导数。

    (3)设函数 z = f(u, x), u = φ(x, y),如果函数 u = φ(x, y) 在点(x, y) 处有对 x 和 对 y 的偏导数,z = f(u, x) 在点 (u, x) 处具有连续偏导数,则函数 z = f[φ(x, y), x] 在点(x, y) 处的两个偏导数存在,且
    ∂ z ∂ x = ∂ f ∂ u ∙ ∂ u ∂ x + ∂ f ∂ x , \frac { \partial z } { \partial x } = \frac { \partial f } { \partial u } \bullet \frac { \partial u } { \partial x } + \frac { \partial f } { \partial x } , xz=ufxu+xf,

    ∂ z ∂ y = ∂ f ∂ u ∙ ∂ u ∂ y . \frac { \partial z } { \partial y } = \frac { \partial f } { \partial u } \bullet \frac { \partial u } { \partial y } . yz=ufyu.

    əz/əx,əf/əx 是不同的,əz/əx 表示在复合函数 z = f[φ(x, y), x] 中把 y 看成常量,对 x 求偏导,而 əf/əx 表示在函数 z = f(u, v) 中把 u 看成常量,对 x 求偏导。
    3. 全微分形式不变性
    设 u = u(x, y), v = v(x, y) 在点 (x,y) 处有连续偏导数,函数 z = f(u, v) 在对应点 (u, v) 处有连续偏导数,则复合函数 z = f(u, v) = f[u(x, y), v(x, y) ] 的全微分
    d z = ∂ z ∂ x d x + ∂ z ∂ y d y = ( ∂ z ∂ u ∙ ∂ u ∂ x + ∂ z ∂ v ∙ ∂ v ∂ x ) d x + ( ∂ z ∂ u ∙ ∂ u ∂ y + ∂ z ∂ v ∙ ∂ v ∂ y ) d y d z = \frac { \partial z } { \partial x } d x + \frac { \partial z } { \partial y } d y = \left ( \frac { \partial z } { \partial u } \bullet \frac { \partial u } { \partial x } + \frac { \partial z } { \partial v } \bullet \frac { \partial v } { \partial x } \right ) d x + \left ( \frac { \partial z } { \partial u } \bullet \frac { \partial u } { \partial y } + \frac { \partial z } { \partial v } \bullet \frac { \partial v } { \partial y } \right ) d y dz=xzdx+yzdy=(uzxu+vzxv)dx+(uzyu+vzyv)dy

    = ∂ z ∂ u ( ∂ u ∂ x d x + ∂ u ∂ y d y ) + ∂ z ∂ v ( ∂ v ∂ x d x + ∂ v ∂ y d y ) = ∂ z ∂ u d u + ∂ z ∂ v d v . = \frac { \partial z } { \partial u } \left ( \frac { \partial u } { \partial x } d x + \frac { \partial u } { \partial y } d y \right ) + \frac { \partial z } { \partial v } \left ( \frac { \partial v } { \partial x } d x + \frac { \partial v } { \partial y } d y \right ) = \frac { \partial z } { \partial u } d u + \frac { \partial z } { \partial v } d v . =uz(xudx+yudy)+vz(xvdx+yvdy)=uzdu+vzdv.

    这表明当f,u,v 都是可微函数时,尽管 u, v 不是自变量,但函数 z = f(u, v) 的全微分也具有与 u, v 是自变量时的全微分相同的形式,这种性质称为全微分形式不变性

隐函数的偏导数与全微分
  1. 一元隐函数的导数
    设 y = y(x) 是由方程 F(x, y) = 0 在 P(x, y) 的某一领域内所确定的一个连续且具有连续导数的函数,函数 F(x, y) 在点 P(x, y) 的某一邻域内由连续偏导数,由多元复合函数的求导法则,对方程F(x, y) = 0 两边求关于 x 的导数,其中 y 是 x 的函数,得 əF/əx + əF/əy * əy/əx = 0
    F x + F y ⋅ d y d x = 0. F _ { x } + F _ { y } \cdot \frac { d y } { d x } = 0 . Fx+Fydxdy=0.

    d y d x = − F x F y . \frac { d y } { d x } = - \frac { F _ { x } } { F _ { y } } . dxdy=FyFx.

  2. 二元隐函数的偏导数与全微分
    设 z = f(x, y) 是由方程 F(x, y, z) = 0 在 P(x, y, z) 的某一邻域内所确定的一个连续且具有连续偏导数的二元函数,函数 F(x, y, z) 在点 P(x, y, z) 的某一邻域内具有连续偏导数,对 F(x, y, z) = 0 两边求关于 x, y的偏导数,得
    ∂ F ∂ x + ∂ F ∂ z ⋅ ∂ z ∂ x = 0 , ∂ F ∂ y + ∂ F ∂ z ⋅ ∂ z ∂ y = 0. \frac { \partial F } { \partial x } + \frac { \partial F } { \partial z } \cdot \frac { \partial z } { \partial x } = 0 , \frac { \partial F } { \partial y } + \frac { \partial F } { \partial z } \cdot \frac { \partial z } { \partial y } = 0 . xF+zFxz=0,yF+zFyz=0.
    若 Fz ≠ 0,则有
    ∂ z ∂ x = − F x F z , ∂ z ∂ y = − F y F z . \frac { \partial z } { \partial x } = - \frac { F _ { x } } { F _ { z } } , \frac { \partial z } { \partial y } = - \frac { F _ { y } } { F _ { z } } . xz=FzFx,yz=FzFy.
    上述等式可以作为二元隐函数偏导数的求导公式,直接利用。除了公式法外,还可以用复合函数求导的法则或全微分形式不变性求隐函数的偏导数。

方向导数和梯度

方向导数

设函数 z = f(x,y) 在点P(x, y) 的某一领域内有定义,l 是由点 P出发的一条射线,并设 Q(x + △x, y + △y) 为位于该领域中 l 上的另一点,相应的函数有该变量 f(Q) - f§ = f(x + △x, y + △y) - f(x, y),记 ρ = √(△x)^2 + (△y)^2,如果极限
lim ⁡ ρ → 0 Δ l Z ρ = lim ⁡ Q → P f ( Q ) − f ( P ) ∣ P Q ∣ = lim ⁡ ρ → 0 f ( x + Δ x , y + Δ y ) − f ( x , y ) ρ \lim _ { \rho \rightarrow 0 } \frac { \Delta _ {l} Z } { \rho } = \lim _ { Q \rightarrow P } \frac { f ( Q ) - f ( P ) } { \mid P Q \mid } = \lim _ { \rho \rightarrow 0 } \frac { f ( x + \Delta x , y + \Delta y ) - f ( x , y ) } { \rho } ρ0limρΔlZ=QPlimPQf(Q)f(P)=ρ0limρf(x+Δx,y+Δy)f(x,y)
存在,则称此极限为 z = f(x, y) 在点 P 处沿方向 l 的方向导数 ,记为 əz/əl 或 əf/əl

如果函数 z = f(x, y) 在点 P(x0, y0) 处可微,则函数 z = f(x, y) 在点 P 处沿任一方向 l 的方向导数都存在,且有
∂ f ∂ l ∣ P = ∂ f ∂ x ∣ P cos ⁡ α + ∂ f ∂ y ∣ P c o s β , \frac { \partial f } { \partial l } | _ { _ { P } } = \frac { \partial f } { \partial x } | _ { _ { P } } \cos \alpha + \frac { \partial f } { \partial y } | _ { _ { P } } c o s \beta , lfP=xfPcosα+yfPcosβ,
其中 cosα、cosβ 为方向 l 的方向余弦。

如果函数 u = f(x, y, z) 在点 M0(x0, y0, z0) 处可微,则函数 f(x, y, z) 在点 M0 处沿任一方向 l 的方向导数都存在,且有
∂ f ∂ l ∣ M 0 = ∂ f ∂ x ∣ M 0 c o s α + ∂ f ∂ y ∣ M 0 c o s β + ∂ f ∂ z ∣ M 0 c o s γ \frac { \partial f } { \partial l } | _ { M _ { 0 } } = \frac { \partial f } { \partial x } | _ { M _ { 0 } } c o s \alpha + \frac { \partial f } { \partial y } | _ { M _ { 0 } } c o s \beta + \frac { \partial f } { \partial z } | _ { M _ { 0 } } c o s \gamma lfM0=xfM0cosα+yfM0cosβ+zfM0cosγ
其中 cosα、cosβ、cosγ 为方向 l 的方向余弦。

函数在一点处可微是函数在该点处沿任一方向的方向导数存在的充分非必要条件

梯度

设 D ⊆ R,函数 z = f(x, y) 在D内具有一阶连续偏导数,对任意一点 M0(x0,y0) ∈ D 称向量为函数 f(x, y) 在点 M0 处的梯度,记为 gradf(x0, y0)▽ f(x0, y0)
g r a d f ( x 0 , y 0 ) = ∇ f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) i + f y ( x 0 , y 0 ) j . g r a d f ( x _ { 0 } , y _ { 0 } ) = \nabla f ( x _ { 0 } , y _ { 0 } ) = f _ { x } ( x _ { 0 } , y _ { 0 } ) i + f _ { y } ( x _ { 0 } , y _ { 0 } ) j. gradf(x0,y0)=f(x0,y0)=fx(x0,y0)i+fy(x0,y0)j.
有梯度的定义知,梯度的模为
∣ g r a d f ( x 0 , y 0 ) ∣ = ( f x ( x 0 , y 0 ) ) 2 + ( f y ( x 0 , y 0 ) ) 2 . \mid g r a d f ( x _ { 0 } , y _ { 0 } ) \mid = \sqrt { ( f _ { x } ( x _ { 0 } , y _ { 0 } ) ) ^ { 2 } + ( f _ { y } ( x _ { 0 } , y _ { 0 } ) ) ^ { 2 } } . gradf(x0,y0)=(fx(x0,y0))2+(fy(x0,y0))2 .
同理,梯度的概念可以推广到三元函数上。设函数 f(x,y,z) 在空间区域 G 内具有一阶连续偏导数,则对于每一点 P0(x0,y0,z0) ∈ G,都可确定出一个向量
f x ( x 0 , y 0 , z 0 ) i + f y ( x 0 , y 0 , z 0 ) j + f z ( x 0 , y 0 , z 0 ) k , f _ { x } ( x _ { 0 } , y _ { 0 } , z _ { 0 } ) i + f _ { y } ( x _ { 0 } , y _ { 0 } , z _ { 0 } ) j + f _ { z } ( x _ { 0 } , y _ { 0 } , z _ { 0 } ) k , fx(x0,y0,z0)i+fy(x0,y0,z0)j+fz(x0,y0,z0)k,
这个向量称为函数 f(x, y, z) 在点 P0(x0,y0,z0) 的梯度,将它记作 gradf(x0,y0,z0)▽ f(x0, y0, z0)
g r a d f ( x 0 , y 0 , z 0 ) = ∇ f ( x 0 , y 0 , z 0 ) = f x ( x 0 , y 0 , z 0 ) i + f y ( x 0 , y 0 , z 0 ) j + f z ( x 0 , y 0 , z 0 ) k . g r a d f ( x _ { 0 } , y _ { 0 } , z _ { 0 } ) = \nabla f ( x _ { 0 } , y _ { 0 } , z _ { 0 } ) = f _ { x } ( x _ { 0 } , y _ { 0 } , z _ { 0 } ) i + f _ { y } ( x _ { 0 } , y _ { 0 } , z _ { 0 } ) j + f _ { z } ( x _ { 0 } , y _ { 0 } , z _ { 0 } ) k . gradf(x0,y0,z0)=f(x0,y0,z0)=fx(x0,y0,z0)i+fy(x0,y0,z0)j+fz(x0,y0,z0)k.
函数在一点处的梯度由函数在该点处的方向导数的关系有:

(1)当方向 l 与在点(x0, y0) 处的梯度方向相同时函数增加最快,此时函数在该方向的方向导数最大,其值为该点的梯度的模,即
∂ f ∂ l ∣ ( x 0 , y 0 ) = ∣ g r a d f ( x 0 , y 0 ) ∣ . \frac { \partial f } { \partial l } | _ { ( x _ { 0 } , y _ { 0 } ) } = | g r a d f ( x _ { 0 } , y _ { 0 } ) | . lf(x0,y0)=gradf(x0,y0).
(2)当方向 l 与在点(x0, y0) 处的梯度方向相反时函数减少最快,此时函数在该方向的方向导数最小,其值为该点的梯度的模的相反数,即
∂ f ∂ l ∣ ( x 0 , y 0 ) = − ∣ g r a d f ( x 0 , y 0 ) ∣ . \frac { \partial f } { \partial l } | _ { ( x _ { 0 } , y _ { 0 } ) } = -| g r a d f ( x _ { 0 } , y _ { 0 } ) | . lf(x0,y0)=gradf(x0,y0).

偏导数的几何应用

空间曲线的切线与法平面

空间曲线 C 的参数方程
KaTeX parse error: Undefined control sequence: \cases at position 2: \̲c̲a̲s̲e̲s̲ ̲{ x = x ( t ) ,…
x(t),y(t),z(t) 都在[α, β] 上可导,且三个导数不同时为零。在点 (x0,y0,z0) 处切线的方向向量{x'(t),y'(t),z'(t)}

从而曲线 C 在点 M0(x0,y0,z0) 处的切向方程
x − x 0 x ′ ( t 0 ) = y − y 0 y ′ ( t 0 ) = z − z 0 z ′ ( t 0 ) , \frac { x - x _ { 0 } } { x ' ( t _ { 0 } ) } = \frac { y - y _ { 0 } } { y ' ( t _ { 0 } ) } = \frac { z - z _ { 0 } } { z ^ { ' } ( t _ { 0 } ) } , x(t0)xx0=y(t0)yy0=z(t0)zz0,
曲线 C 在点 点 M0(x0,y0,z0) 处的法平面方程
x ′ ( t 0 ) ( x − x 0 ) + y ′ ( t 0 ) ( y − y 0 ) + z ′ ( t 0 ) ( z − z 0 ) = 0. x ^ { ' } ( t _ { 0 } ) ( x - x _ { 0 } ) + y ^ { ' } ( t _ { 0 } ) ( y - y _ { 0 } ) + z ^ { ' } ( t _ { 0 } ) ( z - z _ { 0 } ) = 0 . x(t0)(xx0)+y(t0)(yy0)+z(t0)(zz0)=0.

在求空间曲线的切线时,先看曲线是否以参数方程形式给出,若不是,看其是否能转化为参数方程,若不易转化成参数方程,可视某一变量为参变量,将其余两个变量看作函数,然后求导可得切线的方向向量,进而得到切线方程。

曲面的切平面和法线

设曲面方程为 F(x, y, z) = 0,M0(x0,y0,z0) 是曲面上一点,设函数 F(x,y,z) 的偏导数在该点连续且不同时为零,过点 M0(x0,y0,z0) 且完全在曲面上的曲线为 C,其参数方程为
KaTeX parse error: Undefined control sequence: \cases at position 2: \̲c̲a̲s̲e̲s̲ ̲{ x = x ( t ) ,…
t = t0 对应于点 M0(x0,y0,z0) ,且 x'(t0),y'(t0),z'(t0) 不全为零。

因为曲线 C 完全在曲面上,所以 F(x(t), y(t), z(t)) ≡ 0。对 t 求导,在 t = t0 处(即在点 M0 处)有
F x ∣ M 0 x ′ ( t 0 ) + F y ∣ M 0 y ′ ( t 0 ) + F z ∣ M 0 z ′ ( t 0 ) = 0. F _ { x } \mid _ { M _ { 0 } } x ' ( t _ { 0 } ) + F _ { y } \mid _ { M _ { 0 } } y ' ( t _ { 0 } ) + F _ { z } \mid _ { M _ { 0 } } z ' ( t _ { 0 } ) = 0 . FxM0x(t0)+FyM0y(t0)+FzM0z(t0)=0.
由前面所讲可知,向量 s={x′(t0),y′(t0),z′(t0)} 正是曲线 C 在点 M0 的切线的方向向量,所以向量 n={Fx∣M0,Fy∣M0,Fz∣M0} 是和这条切线垂直。又由于所取曲线 C 的任意性,可知曲面上任意一条通过 M0 的线段皆垂直于向量 {Fx∣M0,Fy∣M0,Fz∣M0} ,因此这些切线应位于同一平面上,这个平面称为曲面在点 M0切平面,而向量 {Fx∣M0,Fy∣M0,Fz∣M0} 就是切平面的法向量,于是切平面方程
F x ∣ M 0 ( x − x 0 ) + F y ∣ M 0 ( y − y 0 ) + F z ∣ M 0 ( z − z 0 ) = 0. F _ { x } \mid _ { M _ { 0 } } ( x - x _ { 0 } ) + F _ { y } \mid _ { M _ { 0 } } ( y - y _ { 0 } ) + F _ { z } \mid _ { M _ { 0 } } ( z - z _ { 0 } ) = 0 . FxM0(xx0)+FyM0(yy0)+FzM0(zz0)=0.
通过点 M0 且于切平面垂直的直线称为曲面在点 M0 的法线,于是法线的方程应为
x − x 0 F x ∣ M 0 = y − y 0 F y ∣ M 0 = z − z 0 F z ∣ M 0 . \frac { x - x _ { 0 } } { F _ { x } \mid _ { M _ { 0 } } } = \frac { y - y _ { 0 } } { F _ { y } \mid _ { M _ { 0 } } } = \frac { z - z _ { 0 } } { F _ { z } \mid _ { M _ { 0 } } } . FxM0xx0=FyM0yy0=FzM0zz0.

多元函数的极值及应用

二元函数的极值

如果二元函数 z = f(x,y) 在点(x0, y0) 处取得极值,则一元函数 z = f(x, y0) 在点 x0 处取得极值,一元函一元函数 z = f(x0, y) 在点 y0 处取得极值。由此得到极值点的必要条件。

(必要条件) 设二元函数 z = f(x,y) 在点(x0, y0) 处取得极值,且fx(x0,y0),fy(x0,y0)存在,则
f x ( x 0 , y 0 ) = 0 , f y ( x 0 , y 0 ) = 0. f _ { x } ( x _ { 0 } , y _ { 0 } ) = 0 , f _ { y } ( x _ { 0 } , y _ { 0 } ) = 0 . fx(x0,y0)=0,fy(x0,y0)=0.
(充分条件) 设二元函数 z = f(x, y) 在点 M0(x0, y0) 的某一邻域内连续,且有连续的一、二阶偏导数,M0(x0, y0) 是驻点,令
A = f x x ( x 0 , y 0 ) , B = f x y ( x 0 , y 0 ) , C = f y y ( x 0 , y 0 ) , A = f _ { x x } ( x _ { 0 } , y _ { 0 } ) , B = f _ { x y } ( x _ { 0 } , y _ { 0 } ) , C = f _ { y y } ( x _ { 0 } , y _ { 0 } ) , A=fxx(x0,y0),B=fxy(x0,y0),C=fyy(x0,y0),
判别式 △ = B^2 - AC,则

(1)当 △ < 0 时,点 M0(x0, y0) 是极值点,且当 A < 0 时,点 M0(x0, y0) 是极大值点;当 A > 0 时,点 M0(x0, y0) 是极小值点;

(2)当 △ > 0 时,点 M0(x0, y0) 不是极值点

(3)当 △ = 0 时,点 M0(x0, y0) 可能是极值点,也可能不是极值点,需另作讨论。

求具有二阶连续偏导数的二元函数的极值步骤如下:

(1)解方程组 fx(x,y) = 0,fy(x,y) = 0, 得一切驻点;

(2)对每一驻点(x0,y0),求出二阶偏导数的值 A,B,C;

(3)确定 B^2 - AC 的符号,按充分条件的结论判定 f(x0, y0) 是否是极值;

(4)如果 f(x0, y0) 是极值,根据 A 的符号判断是极大值还是极小值,并求出极值点处的函数值。

条件极值

上述极值对定义域内的自变量并未加其他限制条件,故可称之为无条件极值.在很多实际问题中,常会碰到对自变量增加限制条件的极值问题,称之为条件极值,对于有些实际问题,可以把条件极值转化为无条件极值,但很多情况下条件极值转化为无条件极值并不简单,所以下面我们来介绍一种直接求条件极值的方法——拉格朗日乘数法.

在求二元函数 z = f(x, y) 在条件 φ(x, y) = 0 条件下可能极值点的具体步骤为:

(1)作拉格朗日函数
L ( x , y ) = f ( x , y ) + λ φ ( x , y ) , L ( x , y ) = f ( x , y ) + \lambda \varphi ( x , y ) , L(x,y)=f(x,y)+λφ(x,y),
其中 λ 是一待定常数;

(2)求 L(x, y) 对 x 于 y 的一阶偏导数,并令其为零,然后与 φ(x,y) = 0 联立求解,即
KaTeX parse error: Undefined control sequence: \cases at position 58: …hi ( x , y ) , \̲c̲a̲s̲e̲s̲ ̲{ \frac { \part…
由此方程组解出 (x, y, λ),所得的点(x, y) 即是 z = f(x, y) 在条件 φ(x,y) = 0 下的可能极值点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值