m多元函数积分学

多元函数积分学

请添加图片描述

二重积分

二重积分的概念及其性质
  1. 二重积分的定义
    ∬ D f ( x , y ) d σ = lim ⁡ λ → 0 ∑ i = 1 n f ( x i , y i ) Δ σ i \iint \limits _ { D } f ( x , y ) d \sigma = \lim _ { \lambda \rightarrow 0 } \sum _ { i = 1 } ^ { n } f ( x _ { i } , y _ { i } ) \Delta \sigma _ { i } Df(x,y)dσ=λ0limi=1nf(xi,yi)Δσi

    dσ称为面积元素,x,y称为积分变量。

    当f(x,y) 在闭区域D上连续时,则二重积分必存在

  2. 二重积分的几何意义
    以区域D为底,曲面z = f(x,y)为顶的曲顶柱体的体积

  3. 二重积分的性质

    1. 保号性
      f ( x , y ) ⩾ 0 , ( x , y ) ∈ D , ∬ D f ( x , y ) d σ ≥ 0. f ( x , y ) \geqslant 0 , ( x , y ) \in D , \iint \limits _ { D } f ( x , y ) d \sigma \ge 0 . f(x,y)0,(x,y)D,Df(x,y)dσ0.

      推论1,反过来不成立

f ( x , y ) ⩽ g ( x , y ) , ( x , y ) ∈ D , ∬ D f ( x , y ) d σ ≤ ∬ D g ( x , y ) d σ f ( x , y ) \leqslant g ( x , y ) , ( x , y ) \in D , \iint \limits _ { D } f ( x , y ) d \sigma \le \iint \limits _ { D } g ( x , y ) d \sigma f(x,y)g(x,y),(x,y)D,Df(x,y)dσDg(x,y)dσ
推论2
∣ ∬ D f ( x , y ) d σ ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d σ | \iint \limits _ { D } f ( x , y ) d \sigma | \le \iint \limits _ { D } \mid f ( x , y ) \mid d \sigma Df(x,y)dσDf(x,y)dσ
2. 利用对称性求二重积分

  ①D关于 x 轴对称,∫∫Df(x,y)dσ = 0, f(x,y)是关于 y 的奇函数
  
   D关于 x 轴对称,∫∫Df(x,y)dσ = 2∫∫D1f(x,y)dσ, f(x,y)是关于 y 的偶函数
  
  ②D关于 y 轴对称,∫∫Df(x,y)dσ = 0, f(x,y)是关于 x 的奇函数
  
   D关于 y 轴对称,∫∫Df(x,y)dσ = 2∫∫D1f(x,y)dσ, f(x,y)是关于 x 的偶函数
  > D1为积分区域D的对称轴的右(上)半部分
二重积分在直角坐标系下的计算方法

X-型
A ( x 0 ) = ∫ φ 1 ( x 0 ) φ 2 ( x 0 ) f ( x 0 , y ) d y A ( x _ { 0 } ) = \int _ { \varphi _ { 1 } ( x _ { 0 } ) } ^ { \varphi _ { 2 } ( x _ { 0 } ) } f ( x _ { 0 } , y ) d y A(x0)=φ1(x0)φ2(x0)f(x0,y)dy

V = ∫ a b A ( x ) d x = ∫ a b [ ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y ] d x V = \int _ { a } ^ { b } A ( x ) d x = \int _ { a } ^ { b } [ \int _ { \varphi _ { 1 } ( x ) } ^ { \varphi _ { 2 } ( x ) } f ( x , y ) d y ] d x V=abA(x)dx=ab[φ1(x)φ2(x)f(x,y)dy]dx

V = ∫ a b d x ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y V = \int _ { a } ^ { b } d x \int _ { \varphi _ { 1 } ( x ) } ^ { \varphi _ { 2 } ( x ) } f ( x , y ) d y V=abdxφ1(x)φ2(x)f(x,y)dy
特殊地,当矩形区域D = {a ≤ x ≤ b, c ≤ y ≤ d}时,有
∬ D f ( x , y ) d σ = ∫ a b d x ∫ c d f ( x , y ) d y = ∫ c d d y ∫ a b f ( x , y ) d x . \iint \limits _ { D } f ( x , y ) d \sigma = \int _ { a } ^ { b } d x \int _ { c } ^ { d } f ( x , y ) d y = \int _ { c } ^ { d } d y \int _ { a } ^ { b } f ( x , y ) d x . Df(x,y)dσ=abdxcdf(x,y)dy=cddyabf(x,y)dx.
若D是上述矩形区域,且f(x,y) = f1(x)f2(y),则
∬ D f 1 ( x ) f 2 ( y ) d x d y = ∫ a b [ ∫ c d f 1 ( x ) f 2 ( y ) d y ] d x = ∫ a b [ f 1 ( x ) ⋅ ∫ c d f 2 ( y ) d y ] d x = ∫ a b f 1 ( x ) d x ⋅ ∫ c d f 2 ( y ) d y \iint \limits _ { D } f _ { 1 } ( x ) f _ { 2 } ( y ) d x d y = \int _ { a } ^ { b } [ \int _ { c } ^ { d } f _ { 1 } ( x ) f _ { 2 } ( y ) d y ] d x = \int _ { a } ^ { b } [ f _ { 1 } ( x ) \cdot \int _ { c } ^ { d } f _ { 2 } ( y ) d y ] d x = \int _ { a } ^ { b } f _ { 1 } ( x ) d x \cdot \int _ { c } ^ { d } f _ { 2 } ( y ) d y Df1(x)f2(y)dxdy=ab[cdf1(x)f2(y)dy]dx=ab[f1(x)cdf2(y)dy]dx=abf1(x)dxcdf2(y)dy

极坐标系下二重积分的计算

由于直角坐标与极坐标的对应关系为 x = rcosθ, y = rsinθ,于是 f(x, y) = f(rcosθ, rsinθ)因此
∬ D f ( x , y ) d σ = lim ⁡ λ → 0 ∑ i = 1 n f ( x i , y i ) Δ σ i = lim ⁡ λ → 0 ∑ i = 1 n f ( r i c o s θ i , r i s i n θ i ) r i Δ r i Δ θ i = ∬ D f ( r c o s θ , r s i n θ ) r d r d θ \iint \limits _ { D } f ( x , y ) d \sigma = \lim _ { \lambda \rightarrow 0 } \sum _ { i = 1 } ^ { n } f ( x _ { i } , y _ { i } ) \Delta \sigma _ { i } = \lim _ { \lambda \rightarrow 0 } \sum _ { i = 1 } ^ { n } f ( r _ { i } c o s \theta _ { i } , r _ { i } s i n \theta _ { i } ) r _ { i } \Delta r _ { i } \Delta \theta _ { i } = \iint \limits _ { D } f ( r c o s \theta , r s i n \theta ) r d r d \theta Df(x,y)dσ=λ0limi=1nf(xi,yi)Δσi=λ0limi=1nf(ricosθi,risinθi)riΔriΔθi=Df(rcosθ,rsinθ)rdrdθ
这就是将直角坐标系下的二重积分转换为极坐标系下的二重积分的公式,其中rdrdθ 就是极坐标系中的面积元素。

在极坐标系下的二重积分化成关于 r 和 θ 的二次积分,通常分下面的三种情况

① 极点在区域D 的内部,D = {(θ, r) | 0 ≤ θ ≤ 2Π, 0 ≤ r ≤ r(θ) },则有
∬ D f ( r c o s θ , r s i n θ ) r d r d θ = ∫ 0 2 π d θ ∫ 0 r ( θ ) f ( r c o s θ , r s i n θ ) r d r . \iint \limits _ { D } f ( r c o s \theta , r s i n \theta ) r d r d \theta = \int _ { 0 } ^ { 2 \pi } d \theta \int _ { 0 } ^ { r ( \theta ) } f ( r c o s \theta , r s i n \theta ) r d r . Df(rcosθ,rsinθ)rdrdθ=02πdθ0r(θ)f(rcosθ,rsinθ)rdr.
② 极点在区域D 的边界线上,D = {(θ, r) | α ≤ θ ≤ β, 0 ≤ r ≤ r(θ) },则有
∬ D f ( r cos ⁡ θ , r sin ⁡ θ ) r d r d θ = ∫ a β d θ ∫ 0 r ( θ ) f ( r cos ⁡ θ , r sin ⁡ θ ) r d r . \iint \limits _ { D } f ( r \cos \theta , r \sin \theta ) r d r d \theta = \int _ { a } ^ { \beta } d \theta \int _ { 0 } ^ { r ( \theta ) } f ( r \cos \theta , r \sin \theta ) r d r . Df(rcosθ,rsinθ)rdrdθ=aβdθ0r(θ)f(rcosθ,rsinθ)rdr.
③ 极点在区域D 之外,D = {(θ, r) | α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ) },则有
∬ D f ( r c o s θ , r s i n θ ) r d r d θ = ∫ a β d θ ∫ r 1 ( θ ) r 2 ( θ ) f ( r c o s θ , r s i n θ ) r d r . \iint \limits _ { D } f ( r c o s \theta , r s i n \theta ) r d r d \theta = \int _ { a } ^ { \beta } d \theta \int _ { r _ { 1 } ( \theta ) } ^ { r _ { 2 } ( \theta ) } f ( r c o s \theta , r s i n \theta ) r d r . Df(rcosθ,rsinθ)rdrdθ=aβdθr1(θ)r2(θ)f(rcosθ,rsinθ)rdr.

交换机分次序或改变积分形式

交换积分次序的解题步骤:
(1)依据已给的积分上、下限满足的不等式画出积分区域的草图;

(2)把积分区域用与第一步中类型不同的另一种不等式表示出来;

(3)给出新的二次积分的上下限,并写出交换积分次序后的二次积分.

直角坐标形式转极坐标形式的解题步骤:
(1)依据已给的积分次序画出积分区域草图;

(2)用极坐标r,0的不等式,表达出积分区域;

(3)写出新的坐标系下的二次积分,其中 x = rcosθ, y = rsinθ, dxdy =rdrdθ

曲线积分

对弧长的曲线积分的概念及性质
  1. 概念
    ∫ L f ( x , y ) d s = lim ⁡ λ → 0 ∑ k = 1 n f ( ξ k , η k ) △ s k , \int _ { L } f ( x , y ) d s = \lim _ { \lambda \rightarrow 0 } \sum _ { k = 1 } ^ { n } f ( \xi _ { k } , \eta _ { k } ) \triangle s _ { k } , Lf(x,y)ds=λ0limk=1nf(ξk,ηk)sk,
    L是xOy平面上的一条光滑曲线弧,也称为第一类曲线积分
  2. 性质
    函数f(x,y)在曲线A->B与B->A上的第一类曲线积分相等,即对弧长的曲线积分与积分路径方向无关
    ∫ A B ^ f ( x , y ) d s = ∫ B A ^ f ( x , y ) d s . \int _ { \widehat { A B } } f ( x , y ) d s = \int _ { \widehat { B A } } f ( x , y ) d s . AB f(x,y)ds=BA f(x,y)ds.
  3. 几何意义
    L与上方z相交的曲边梯形的面积
对弧长的曲线积分的计算

设函数f(x,y) 在曲线弧 L 上有定义且连续,对弧长的曲线积分的计算可分为以下三种情况。

① 若曲线弧L的方程为y = y(x),x∈[a, b],且y = y(x) 在[a,b]上具有一阶连续导数,则
∫ L f ( x , y ) d s = ∫ a b f ( x , y ( x ) ) 1 + ( y ′ ( x ) ) 2 d x . \int _ { L } f ( x , y ) d s = \int _ { a } ^ { b } f ( x , y ( x ) ) \sqrt { 1 + ( y ' ( x ) ) ^ { 2 } } d x . Lf(x,y)ds=abf(x,y(x))1+(y(x))2 dx.
② 若曲线弧L的方程为x = x(y),y∈[c, d],且x = x(y) 在[c,d]上具有一阶连续导数,则
∫ L f ( x , y ) d s = ∫ c d f ( x ( y ) , y ) 1 + ( x ′ ( y ) ) 2 d y . \int _ { L } f ( x , y ) d s = \int _ { c } ^ { d } f ( x ( y ) , y ) \sqrt { 1 + ( x ^ { ' } ( y ) ) ^ { 2 } } d y . Lf(x,y)ds=cdf(x(y),y)1+(x(y))2 dy.
③ 若曲线弧的参数方程为x = x(t), y = y(t),t∈[α, β], x = x(t), y = y(t) 在[α, β]上有一阶连续导数,且(x′(t)2+(y′(t)2≠0,则
∫ L f ( x , y ) d s = ∫ a β f ( x ( t ) , y ( t ) ) ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 d t \int _ { L } f ( x , y ) d s = \int _ { a } ^ { \beta } f ( x ( t ) , y ( t ) ) \sqrt { ( x ^ { ' } ( t ) ) ^ { 2 } + ( y ^ { ' } ( t ) ) ^ { 2 } } d t Lf(x,y)ds=aβf(x(t),y(t))(x(t))2+(y(t))2 dt

对坐标的曲线积分的概念及性质
  1. 概念
    ∫ L P ( x , y ) d x = lim ⁡ λ → 0 ∑ k = 1 n P ( ξ k , η k ) Δ x k , ∫ L Q ( x , y ) d y = lim ⁡ λ → 0 ∑ k = 1 n Q ( ξ k , η k ) Δ y k \int _ { _ { L } } P ( x , y ) d x = \lim _ { \lambda \rightarrow 0 } \sum _ { k = 1 } ^ { n } P ( \xi _ { k } , \eta _ { k } ) \Delta x _ { k } , \int _ { _ { L } } Q ( x , y ) d y = \lim _ { \lambda \rightarrow 0 } \sum _ { k = 1 } ^ { n } Q ( \xi _ { k } , \eta _ { k } ) \Delta y _ { k } LP(x,y)dx=λ0limk=1nP(ξk,ηk)Δxk,LQ(x,y)dy=λ0limk=1nQ(ξk,ηk)Δyk
    L是xOy平面上由A 到 B 的有向光滑曲线弧,也称为第二类曲线积分 分别表示函数P x-z的曲边梯形的面积和函数Q y-z的曲边梯形的面积
    $$
    \int _ { L } P ( x , y ) d x + \int _ { L } Q ( x , y ) d y,

    \int _ { L } P ( x , y ) d x + Q ( x , y ) d y ,

    \int _ { L } F ( x , y ) \cdot d s

当 L 为 一 封 闭 曲 线 时 , 当L为一封闭曲线时, L线
\int _ { L } P ( x , y ) d x + Q ( x , y ) d y = \oint _ { L } P ( x , y ) d x + Q ( x , y ) d y .
2. 性 质 设 L 是 有 向 曲 线 弧 , A B 是 与 B A 方 向 相 反 的 有 向 曲 线 弧 2. 性质 设L 是有向曲线弧,AB是与BA方向相反的有向曲线弧 2.L线ABBA线
\int _ { A B } P ( x , y ) d x = - \int _ { B A } P ( x , y ) d x
$$
3.

对坐标的曲线积分的计算

假定被积函数在有向曲线弧L上连续

① 若有向曲线弧线 L 的方程为 y = y(x),曲线弧L 起点的横坐标为 x = a,终点的横坐标为 x = b(a 不一定小于 b),函数y(x) 在 [a, b]或[b, a] 上有一阶连续导数,则
∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ a b [ P ( x , y ( x ) ) + Q ( x , y ( x ) ) ⋅ y ′ ( x ) ] d x . \int _ { L } P ( x , y ) d x + Q ( x , y ) d y = \int _ { a } ^ { b } [ P ( x , y ( x ) ) + Q ( x , y ( x ) ) \cdot y ' ( x ) ] d x . LP(x,y)dx+Q(x,y)dy=ab[P(x,y(x))+Q(x,y(x))y(x)]dx.
② 若有向曲线弧线 L 的方程为 x = x(y),曲线弧L 起点的纵坐标为 y = c,终点的纵坐标为 y = d(c 不一定小于 d),函数x(y) 在 [c, d]或[d, c] 上有一阶连续导数,则
∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ c d [ P ( x ( y ) , y ) ⋅ x ′ ( y ) + Q ( x ( y ) , y ) ] d y . \int _ { L } P ( x , y ) d x + Q ( x , y ) d y = \int _ { c } ^ { d } [ P ( x ( y ) , y ) \cdot x ' ( y ) + Q ( x ( y ) , y ) ] d y . LP(x,y)dx+Q(x,y)dy=cd[P(x(y),y)x(y)+Q(x(y),y)]dy.
③ 若有向曲线弧L由参数方程 x = x(t), y = y(t) 给出,参数 t = α 对应曲线弧L 的起点,t = β 对应曲线L的终点(α 不一定小于 β),函数x(t)、y(t) 在[α, β] 或 [β, α]具有一阶连续导数,且(x′(t)2+(y′(t)2≠0,则
∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ x β [ P ( x ( t ) , y ( t ) ) ∙ x ′ ( t ) + Q ( x ( t ) , y ( t ) ) ∙ y ′ ( t ) ] d t . \int _ { L } P ( x , y ) d x + Q ( x , y ) d y = \int _ { x } ^ { \beta } [ P ( x ( t ) , y ( t ) ) \bullet x ^ { ' } ( t ) + Q ( x ( t ) , y ( t ) ) \bullet y ^ { ' } ( t ) ] d t . LP(x,y)dx+Q(x,y)dy=xβ[P(x(t),y(t))x(t)+Q(x(t),y(t))y(t)]dt.

格林公式

设D为平面区域,若D内任一闭曲线所围的部分都属于D,则称D为平面单连通区域 ,否则称为复连通区域.通俗地说,平面单连通区域就是不含有“洞”(包括点“洞”)的区域,它内部任意一条闭曲线围成的区域都完全落在区域D内,复连通区域是含有“洞”(包括点“洞”)的区域.例如,平面上的圆形区域{(x, y)|x2+y2 ≤ 1)、上半平面{(x,y)|y>0}都是单连通区域,圆环形区域{(x,y)|1 ≤ x^2+ y^2 ≤4),{(x,y) | 0 < x2+y2 ≤ 2}都是复连通区域。

格林公式

设闭区域D(单连通) 由分段光滑的曲线L围成,若函数 P(x, y) 和函数 Q(x, y) 在有界闭区域D上有一阶连续偏导数,则
∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∮ L P d x + Q d y , \iint \limits _ { D } \left ( \frac { \partial Q } { \partial x } - \frac { \partial P } { \partial y } \right ) d x d y = \oint _ { L } P d x + Q d y , D(xQyP)dxdy=LPdx+Qdy,
其中L为区域D的边界曲线,并取正方向,上式称为格林公式

平面上的曲线积分与路径无关的条件

设 G 是单连通区域,函数 P(x, y) 和 Q(x, y) 在G内具有一阶连续偏导数,曲线 L ⊆ G,则曲线积分∫L Pdx + Qdy 在G内与路径无关(或沿G 内任意闭曲线积分为零)的从要条件是
∂ P ∂ y = ∂ Q ∂ x , ( x , y ) ∈ G . \frac { \partial P } { \partial y } = \frac { \partial Q } { \partial x } , ( x , y ) \in G . yP=xQ,(x,y)G.

  • 18
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值