m常微分方程

常微分方程

请添加图片描述

微分方程的基本概念

微分方程:表示未知函数、未知函数的导数或微分与自变量之间的关系的方程。
如果微分方程中的未知函数(一元函数)仅含有一个自变量,这样的微分方程称为常微分方程。否则,称为偏微分方程

微分方程的阶:方程中未知函数的最高导数的阶数 n 叫作该微分方程的阶,同时该方程叫做 n 阶微分方程。

线性微分方程:微分方程中所含的未知函数及其各阶导数全是一次幂,形如:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8R5wA8uY-1651477352559)(https://bkimg.cdn.bcebos.com/formula/9da6947c9678587d6a1838c9c2f5a141.svg)]

微分方程的解:带入微分方程后能使方程成为恒等式的函数y=f(x)。

通解:解中所含任意常数相互独立且个数与方程的阶数相同

特解:不含任意常数的解。

我们用未知函数及其各阶导数在某个特定点的值作为确定通解中任意常数的条件,称为微分方程的初始条件

初值问题:求微分方程满足初始条件的解的问题。

初值问题特解:通过初始条件确定的不含任意常数的解。

一阶微分方程

  1. 可分离变量微分方程
    设有一阶微分方程dy / dx = F(x,y),如果右端可以分解为F(x,y) = f(x) *g(y)其中f(x),g(y)都是连续函数。

d y d x = f ( x ) ⋅ g ( y ) \frac {dy}{dx} = f(x) \cdot g(y) dxdy=f(x)g(y)

  1. 齐次微分方程
    可化为如下形式的
    d y d x = φ ( y x ) \frac {dy}{dx} = \varphi(\frac{y}{x}) dxdy=φ(xy)

解法

做变换 u = y / x,对 y = xu 两边求导得

d y d x = u + x d u d x \frac {dy}{dx} = u + x\frac {du}{dx} dxdy=u+xdxdu

  1. 一阶线性微分方程
    • 一阶齐次线性微分方程
      d y d x + P ( x ) y = 0 \frac {dy}{dx} + P(x)y = 0 dxdy+P(x)y=0

通解
y = C e − ∫ P ( x ) d x y = Ce^{-\int P(x) dx} y=CeP(x)dx

  • 一阶非齐次线性微分方程
    d y d x + P ( x ) y = Q ( x ) \frac {dy}{dx} + P(x)y = Q(x) dxdy+P(x)y=Q(x)

    通解

y = e − ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x d x + C ] y = e^{-\int P(x) dx}[\int Q(x) e^{\int P(x)dx}dx + C] y=eP(x)dx[Q(x)eP(x)dxdx+C]
也可写成
y = C e − ∫ P ( x ) d x + e − ∫ P ( x ) d x ∫ Q ( x ) e ∫ P ( x ) d x d x y = Ce^{-\int P(x) dx} + e^{-\int P(x) dx}\int Q(x) e^{\int P(x)dx}dx y=CeP(x)dx+eP(x)dxQ(x)eP(x)dxdx
一阶非齐次线性微分方程的通解是对应的一阶齐次线性微分方程的通解与一阶非齐次线性微分方程的特解之和

可降阶的高阶微分方程

  1. y^(n) = f(x)型的微分方程
  2. y’’ = f(x,y’)型的微分方程(不显含未知函数y)
    令y’ = p,则y’’ = p’,代入原方程,得p’ = f(x,p),这是关于x和p的一阶方程,如果可以求出其通解p,分离变量再积分一次便得到通解
  3. y’’ = f(y,y’)型的微分方程(不显含未知函数x)
    令y’ = p,那么y’’ = dp/dx = (dp/dy) * (dy/dx) = p*(dp/dy),如果可以求出其通解p,分离变量再积分一次便得到通解

二阶常系数线性微分方程

二阶线性非齐次微分方程
y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) y'' + p(x)y' + q(x)y = f(x) y+p(x)y+q(x)y=f(x)
二阶线性齐次微分方程
y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 y'' + p(x)y' + q(x)y = 0 y+p(x)y+q(x)y=0
二阶常系数线性非齐次微分方程
y ′ ′ + p y ′ + q y = f ( x ) y'' + py' + qy = f(x) y+py+qy=f(x)
二阶常系数线性齐次微分方程
y ′ ′ + p y ′ + q y = 0 y'' + py' + qy = 0 y+py+qy=0

二阶线性微分方程解的结构

  1. 二阶线性齐次微分方程解的结构
    如果函数 y1 和 y2 是方程的解,则函数 y = C1y1 + C2y2(C1, C2为任意常数)也是方程的解。
    如果函数 y1 和 y2 是方程的两个线性无关的特解,则函数 y = C1y1 + C2y2(C1, C2为任意常数)是方程的通解
  2. 二阶线性非齐次微分方程解的结构
    设函数y* 是二阶线性非齐次微分方程的一个特解,函数Y 是对应对应的线性齐次微分方程的通解,则y = Y + y* 是方程的通解。
    若y1 为方程y‘’ + p(x)y' + q(x)y = f1(x) 的特解,y2 为方程 y‘’ + p(x)y' + q(x)y = f2(x) 的特解,则y = y1 + y2 为方程y‘’ + p(x)y' + q(x)y = f1(x) f2(x) 的特解。–常称为线性微分方程的解的叠加原理

二阶常系数线性齐次微分方程的解

特征方程的两个根r1, r2方程y'' + py' + qy = 0 的通解特征方程
两个不相等的实根r1,r2y=C1e^r1x + C2e^r2x(r - k1)(r - k2) = 0
两个相等的实根r1 = r2y=(C1+C2x)e^r1x(r-k)^2 = 0
一对共轭复根 r1,2 = α ± iβ,β ≠ 0y=e^αx(C1cosβx + C2sinβx)(r - α)^2 = -β^2

二阶常系数线性非齐次微分方程的解

f(x)的形式特解y*(x)的形式
f(x) = Pm(x),
其中Pm(x)为m次多项式
0不是特征根:y* = Qm(x)
0是特征单根:y* = xQm(x)
0是特征重根:y* = x^2Qm(x)
f(x) = Pm(x)e^λxλ不是特征根:y* = Qm(x)e^λx
λ是特征单根:y* = xQm(x)e^λx
λ是特征重根:y* = x^2Qm(x)e^λx
f(x) = e^λx[Pn(x)cosωx + Tm(x)sinωx ],其
中Pn(x),Tm(x)分别为n次,m次多项式
λ±iω不是特征根:y*=e^λx[Rl(x)cosωx + Sl(x)sinωx ]
λ±iω是特征根:y*=xe^λx[Rl(x)cosωx + Sl(x)sinωx ]
  • 12
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值