matlab几种直方图均衡化方法学习笔记(HE、AHE、CLAHE附代码)

1、直方图:是用来描述图像像素灰度级与该像素出现频率之间的关系,表征图像像素的分布情况。
2、直方图均衡化方法(HE)通过将图像的灰度直方图从较为集中的某灰度区间拉伸到全部灰度范围内均匀分布,以此来扩大图像像素灰度值的分布范围,从而达到改善图像颜色和对比度的目的。简单说,就是把原来的图像的灰度分配均匀,使得0-255都有一定的取值。 是对整幅图像的每个像素都采用相同的变换。
优点简单易操作、速度快等。 缺点:若图像中存在过亮或过暗的局部区域时,这些区域的对比度并不能得到增强。
     
步骤:①统计图像中每个灰度值像素的个数(确定图像的灰度级)
           ②计算每个灰度值像素的频率,并计算累计频率(计算原始直方图的概率,计算直方图概率的累加值)
           ③将图像进行映射, 图像的灰度值=图像原来灰度值*累计频率(根据公式求取像素映射关系,灰度映射
举个例子:直方图均衡化的原理及过程(图源: 直方图均衡化的原理及实现_直方图均衡化原理_knowyourself1的博客-CSDN博客

 代码块及效果

clear all;  %清除Matlab缓存数据
close all;
clc;
f=imread('F:\暗通道图像去雾matlab\图像去雾程序MATLAB\迷雾1.png');
f=rgb2gray(f);
subplot(221),imshow(f),title('原灰度图');
subplot(222),imhist(f),title('原灰度图像直方图');
g=histeq(f);
subplot(223),imshow(g),title('直方图均衡化后图');
subplot(224),imhist(g),title('均衡化后直方图');

imhist函数是matlab自带的计算图像灰度直方图的函数。(具体代码可参考: 直方图均衡化(HE, AHE, CLAHE)_直方图均衡化ahe_GtLinyer的博客-CSDN博客
3、自适应直方图均衡化方法(AHE):将图像划分成多个局部区域,然后通过计算图像局部区域的直方图来调整原始图像的亮度分布。(就是每个像素通过其周边一个矩形范围内的像素的直方图进行均衡化。均衡的方式则完全同普通的均衡化算法:变换函数同像素周边的累积直方图函数(CDF)成比例)
优点:改善了图像局部区域的对比度,并获得了更多的细节。 缺点:存在噪声放大等问题。
当某个区域包含的像素值非常接近,其区域的直方图就会尖状化,此时直方图的变换函数会将一个很窄范围内的像素映射到整个像素范围。这将使得某些平坦区域中的少量噪音经AHE处理后过度放大。
局部直方图处理大致有3种实现方法:( 图像直方图及均衡方法总结(二)自适应直方图均衡AHE,CLAHE_自适应直方图均衡化原理_Naruto_Q的博客-CSDN博客)
①将原始图片划分成不重叠的子块,在每个子块内做直方图处理,该方法简单但输出图像会有块效应;
②类似模板卷积的方式,以待处理的点为中心,取其邻域为子块,在子块内做直方图处理,处理结果仅映射到该点可以消除块效应,但需要对每个点计算一次直方图处理,效率低;
③前两种方法的结合版,不再逐像素移动,步长小于子块宽度以确保两个相邻子块有重叠;每个子块做直方图映射后的结果赋值给子块内所有点,这样每个点会有多次赋值,最终的取值为这些赋值的均值;
4、 对比度受限制自适应直方图均衡化(CLAHE):
将图片先分成若干区域块,然后在每个区域中根据一定的输出直方图分布(在Matlab中,该分布为用户指定)单独进行均衡化的处理,最后相邻的区域通过 线性差值进行拼接,有效降低边界伪影。
CLAHE与AHE的不同主要在于其对于对比度的限幅,在CLAHE中,对于每个小区域都必须使用对比度限幅,用来克服AHE的过度放大噪音的问题。 
CLAHE通过用预先定义的阈值来裁剪直方图以达到限制放大倍数的目的。该算法的优势在于它不是选择直接忽略掉那些超出限幅的部分,而是将这些裁剪掉的部分均匀分布到直方图的其他部分。

如果仅仅需要一个结果,可以直接使用matlab中的adapthisteq()函数。函数adapthisteq()只能用来处理灰度图,如果要处理彩色图像,则需要结合自己编写的代码来完成。

clear all;  %清除Matlab缓存数据
close all;
clc;

img=imread('F:\暗通道图像去雾matlab\图像去雾程序MATLAB\迷雾1.png');
figure,
subplot(1,2,1),imshow(img);title('原图');
if length(size(img))>2
    rimg = img(:,:,1);  
    gimg = img(:,:,2);  
    bimg = img(:,:,3);  
    resultr = adapthisteq(rimg);  
    resultg = adapthisteq(gimg);  
    resultb = adapthisteq(bimg);  
    result = cat(3, resultr, resultg, resultb); 
    subplot(1,2,2),imshow(result);title('CLAHE处理后');
end

 adapthisteq()参数对图像的影响:

clear all;  %清除Matlab缓存数据
close all;
clc;

g=imread('F:\暗通道图像去雾matlab\图像去雾程序MATLAB\迷雾2.png');
f=rgb2gray(g)
subplot 221;imshow(f);title('(a)原灰度图像');
g1=adapthisteq(f); subplot 222;imshow(g1);
title('(b)使用adapthisteq默认值[8 8]');

g2=adapthisteq(f,'NumTiles',[25 25]);
subplot 223;imshow(g1);
title('(c)NumTiles置为[25 25]的结果');
g3=adapthisteq(f,'NumTiles',[25 25],'ClipLimit',0.05);
subplot 224;imshow(g1);
title('(d)使用这一小片数量且ClipLimit=0.05');

 如有错误,还请指正。❤

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值