基于EEG的睡眠分期算法记录3-使用决策树多类支持向量机的自动睡眠阶段分类

学习机和睡眠脑:使用决策树多类支持向量机的自动睡眠阶段分类
Learning machines and sleeping brains: Automatic sleep stage
classification using decision-tree multi-class support vector machines
数据集:
多导睡眠图数据库
所有信号都以1000赫兹的采样频率记录下来。专家使用R&K指南,在连续30秒的窗口内对15次PSG睡眠记录进行视觉评分。
1.预处理
脑电图信号通常受到许多假象(肌肉假象、心电图、眼球运动和眨眼)的干扰。
用截止频率为0.2和40 Hz的带通滤波器过滤脑电图信号。然后根据睡眠评分标准中使用的分段,将所有多导睡眠图信号分段为30年代。具有任何剩余显著伪影的数据段被排除在后续分析之外。
2.特征提取
使用的特征可以大致分为线性(包括时域和频域特征)和非线性测量。时域和非线性特征直接从信号的时间序列中计算,而这里使用的频域特征是从信号的功率谱密度估计中提取的。总共为每个类(即睡眠阶段)提取了102个特征,产生一个N × 102矩阵。
1.线性特征:线性预测误差能量;
2.时域特征:在这里插入图片描述3.我们使用的频域特征包括总的和相对的频谱功率、功率比和频谱熵。
我们计算了所有个体中每个时期的以下频域特征:(a)总功率,(b)五个频带中每个频带的相对功率(Prel)(将每个频带中的绝对功率除以整个部分中所有频率的功率之和),©五个频带中所有16种组合的功率比(例如,δ/α、δ/β、δ/σ、α/β、α/θ等)。)
最后是©谱熵(Sen),一种信号规律性的度量,由Pardey等人(1996)于1996年提出,可由相对功率Prelas计算如下:Sen =(1/log N)?N f = 1 Prel(f)÷log Prel(f),其中N是频率仓的总数,f是每个频率仓的值。纯正弦波的谱熵为零,不相关白噪声的谱熵为1。
4.非线性特征
排列熵
Teager energy operator. (TEO)
3.特征预处理和降维:从102个降到32个
1.搜索异常值(值比同一类别中同一特征的所有值的标准差高两倍的特征)。
2.为了减少特征空间的维数,我们排除了在用标准t检验进行统计检验时,在类之间看起来是最少判别式的特征:我们运行t检验统计检验来比较5个阶段(清醒、S1、S2、SWS和快速眼动)中所有对的每个特征的平均值
结果:
在这里插入图片描述4.多级SVM分类
1.树形图多级SVM
2.SVM参数优化
3.特征子集选择
4.分类
5.结果分析

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值