43.Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems

基于非线性最小二乘高斯牛顿法提出一种SGD更好的更新神经网络的算法:二节收敛,计算量不高和一节差不多。可扩充到分类问题。这个算法的思想也和NTK(neural tangent kernel)问题有点类似,并叙述了他们之间的关系。

1.基础知识:
(1)最小二乘问题:https://blog.csdn.net/jing___yu/article/details/100063967
(2)神经正切核: https://blog.csdn.net/ddzr972435946/article/details/102163161

2.原文链接:
https://www.groundai.com/project/a-gram-gauss-newton-method-learning-overparameterized-deep-neural-networks-for-regression-problems/1

3.ppt:
http://tianle.mit.edu/sites/default/files/documents/Tianle_GGN_PKU.pdf

4.算法:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值