47.Convolutional LSTM Network

Convolutional LSTM Network:A Machine Learning Approach for Precipitation Nowcasting

0.提出背景
针对时序序列数据,将与周围区域的相关性和时间属性均考虑进来,提出了卷积Lstm。可应用于任何和时序相关的任务,例如天气预报预测、视频动作识别等。
1.网络结构
(1)整体框架

在这里插入图片描述

(2)每个单元计算:
对传统的lstm对比:

在这里插入图片描述

Convlstm:

在这里插入图片描述

即将之前部分全联接变成8个卷积操作。
2.代码
(1)每个单元计算:
class ConvLSTMCell(nn.Module):
    def __init__(self, input_channels, hidden_channels, kernel_size):
        super(ConvLSTMCell, self).__init__()

        assert hidden_channels % 2 == 0

        self.input_channels = input_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.num_features = 4

        self.padding = int((kernel_size - 1) / 2)

        self.Wxi = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True)
        self.Whi = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False)
        self.Wxf = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True)
        self.Whf = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False)
        self.Wxc = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True)
        self.Whc = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False)
        self.Wxo = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True)
        self.Who = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False)

        self.Wci = None
        self.Wcf = None
        self.Wco = None

    def forward(self, x, h, c):
        ci = torch.sigmoid(self.Wxi(x) + self.Whi(h) + c * self.Wci)
        cf = torch.sigmoid(self.Wxf(x) + self.Whf(h) + c * self.Wcf)
        cc = cf * c + ci * torch.tanh(self.Wxc(x) + self.Whc(h))
        co = torch.sigmoid(self.Wxo(x) + self.Who(h) + cc * self.Wco)
        ch = co * torch.tanh(cc)
        return ch, cc

    def init_hidden(self, batch_size, hidden, shape):
        if self.Wci is None:
            self.Wci = nn.Parameter(torch.zeros(1, hidden, shape[0], shape[1])).cuda()
            self.Wcf = nn.Parameter(torch.zeros(1, hidden, shape[0], shape[1])).cuda()
            self.Wco = nn.Parameter(torch.zeros(1, hidden, shape[0], shape[1])).cuda()
        else:
            assert shape[0] == self.Wci.size()[2], 'Input Height Mismatched!'
            assert shape[1] == self.Wci.size()[3], 'Input Width Mismatched!'
        return (Variable(torch.zeros(batch_size, hidden, shape[0], shape[1])).cuda(),
                Variable(torch.zeros(batch_size, hidden, shape[0], shape[1])).cuda())

(2)构建整个网络:
class ConvLSTM(nn.Module):
    # input_channels corresponds to the first input feature map
    # hidden state is a list of succeeding lstm layers.
    def __init__(self, input_channels, hidden_channels, kernel_size, step=1, effective_step=[1]):
        super(ConvLSTM, self).__init__()
        self.input_channels = [input_channels] + hidden_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.num_layers = len(hidden_channels)
        self.step = step
        self.effective_step = effective_step
        self._all_layers = []
        for i in range(self.num_layers):
            name = 'cell{}'.format(i)
            cell = ConvLSTMCell(self.input_channels[i], self.hidden_channels[i], self.kernel_size)
            setattr(self, name, cell)
            self._all_layers.append(cell)

    def forward(self, input):
        internal_state = []
        outputs = []
        for step in range(self.step):  # lstm的步数
            x = input
            for i in range(self.num_layers):  # 层数
                # all cells are initialized in the first step
                name = 'cell{}'.format(i)
                if step == 0:
                    bsize, _, height, width = x.size()  # batch,channel,height,width
                    (h, c) = getattr(self, name).init_hidden(batch_size=bsize, hidden=self.hidden_channels[i],
                                                             shape=(height, width))
                    internal_state.append((h, c))

                # do forward
                (h, c) = internal_state[i]
                x, new_c = getattr(self, name)(x, h, c)
                internal_state[i] = (x, new_c)
            # only record effective steps
            if step in self.effective_step:
                outputs.append(x)

        return outputs, (x, new_c)

(3)使用:
if __name__ == '__main__':
    # gradient check
    convlstm = ConvLSTM(input_channels=512, hidden_channels=[128, 64, 64, 32, 32], kernel_size=3, step=5,
                        effective_step=[4]).cuda()
    loss_fn = torch.nn.MSELoss()

    input = Variable(torch.randn(1, 512, 64, 32)).cuda()
    target = Variable(torch.randn(1, 32, 64, 32)).double().cuda()

    output = convlstm(input)
    output = output[0][0].double()
    res = torch.autograd.gradcheck(loss_fn, (output, target), eps=1e-6, raise_exception=True)
    print(res)
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
使用N-way K-shot的few-shot learning。数据集使用DCASE2018 challenge的数据 卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求和,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化和平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)和大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像和视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值