剑指之list链表合集

03–输入一个链表,按链表从尾到头的顺序返回一个ArrayList。

算法思路:
借用栈结构,将链表存入到栈中,再从栈中pop出来

014–输入一个链表,输出该链表中倒数第k个结点。

算法思路:
设置两个指针,p1,p2,先让p2走k-1步,然后再一起走,直到p2为最后一个 时,p1即为倒数第k个节点

015–输入一个链表,反转链表后,输出新链表的表头。

算法思路:
从头到尾修改指针的方向,然后输出最后的元素

016–输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则。

算法思路:
遍历两个链表,按大小顺序拼接;
如果 pHead1 和 pHead2,均没遍历完:
如果 pHead1.val <= pHead2.val,那么当前 node 的 next 指向 pHead1。并且移动 pHead1 指针。
否则,当前 node 的 next 指向 pHead2,移动 pHead2 指针。
移动 node 指针
继续循环
否则,结束循环:
如果 pHead1 未遍历完,node 的 next 指向 pHead1

036–输入两个链表,找出它们的第一个公共结点。

算法思路:
首先我们要知道什么是公共节点,两个链表从某一节点开始,他们的next都指向同一个节点。但由于是单向链表的节点,每个节点只有一个next,因此从第一个公共节点开始,之后他们的所有节点都是重合的,不可能再出现分叉。所以可以先遍历两个链表得到他们的长度,就能知道哪个链表比较长,以及长的链表比短的链表多几个结点。在第二次遍历的时候,在较长的链表上先走若干步,接着同时在两个链表上遍历,找到的第一个相同的结点就是他们的第一个公共结点。时间复杂度为O(m+n),

055 --在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,返回链表头指针。 例如,链表1->2->3->3->4->4->5 处理后为 1->2->5

算法思路:链接:
借助辅助头结点,可避免单独讨论头结点的情况。设置两个结点 pre 和 cur,当 cur 和 cur.next 值相等,cur 一直向前走,直到不等退出循环,这时候 cur 指的值还是重复值,调整 cur 和 pre 的指针再次判断

056 --一个链表中包含环,请找出该链表的环的入口结点。要求不能使用额外的空间。

算法思路:
使用双指针,一个快指针 fast 每次移动两个节点,一个慢指针 slow 每次移动一个节点。因为存在环,所以两个指针必定相遇在环中的某个节点上。

假设环入口节点为 y1,相遇所在节点为 z1。

假设快指针 fast 在圈内绕了 N 圈,则总路径长度为 x+Ny+(N-1)z。z 为 (N-1) 倍是因为快慢指针最后已经在 z1 节点相遇了,后面就不需要再走了。

而慢指针 slow 总路径长度为 x+y。

因为快指针是慢指针的两倍,因此 x+Ny+(N-1)z = 2(x+y)。

我们要找的是环入口节点 y1,也可以看成寻找长度 x 的值,因此我们先将上面的等值分解为和 x 有关:x=(N-2)y+(N-1)z。

上面的等值没有很强的规律,但是我们可以发现 y+z 就是圆环的总长度,因此我们将上面的等式再分解:x=(N-2)(y+z)+z。这个等式左边是从起点x1 到环入口节点 y1 的长度,而右边是在圆环中走过 (N-2) 圈,再从相遇点 z1 再走过长度为 z 的长度。此时我们可以发现如果让两个指针同时从起点 x1 和相遇点 z1 开始,每次只走过一个距离,那么最后他们会在环入口节点相遇。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值