剑指总结--递归和循环

1. 斐波那契数列

题目描述:

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。假设n<=39。

解题思路:

斐波那契数列:0,1,1,2,3,5,8… 总结起来就是:第一项是0,第二项是1,后续第n项为第n-1项和第n-2项之和。

用公式描述如下:

在这里插入图片描述
 看到这个公式,非常自然的可以想到直接用递归解决。但是这里存在一个效率问题,以求f(10)为例,需要先求出前两项f(9)和f(8),同样求f(9)的时候又需要求一次f(8),这样会导致很多重复计算,下图可以直观的看出。重复计算的结点数会随着n的增加而急剧增加,导致严重的效率问题。

因此,可以不使用递归,直接使用简单的循环方法实现。

public int Fibonacci(int n) {
        if(n==0)
            return 0;
        if(n==1)
            return 1;
        //return Fibonacci(n-1)+Fibonacci(n-2); //递归只需要这一句
        int first=0,second=1,res=0;
        for(int i=2;i<=n;i++){
            res=first+second;
            first=second;
            second=res;
        }
        return res;
    }

2. 跳台阶

题目描述:

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

解题思路:

首先考虑最简单的情况,如果只有1级台阶,显然只有一种跳法。如果有两级台阶,就有两种跳法:一种是分两次跳,一种是一次跳两级。

在一般情况下,可以把n级台阶的跳法看成n的函数,记为f(n),那么一般情况下,一开始我们有两种不同的选择:(1)第一步只跳一级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即f(n-1);(2)第一步跳两级,那么跳法数目等于后面剩下的n-2级台阶的跳法数目,即f(n-2)。所以f(n)=f(n-1)+f(n-2)。
  思路与斐波那契数列相同

public int JumpFloor(int target) {
        if(target<1)
            return 0;
        if(target==1)
            return 1;
        if(target==2)
            return 2;
        int first=1,second=2,res=0;
        for(int i=3;i<=target;i++){
            res=first+second;
            first=second;
            second=res;
        }
        return res;
    }

3. 变态跳台阶

题目描述:

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

解题思路:

当只有一级台阶时,f(1)=1;当有两级台阶时,f(2)=f(2-1)+f(2-2);一般情况下,当有n级台阶时,f(n)=f(n-1)+f(n-2)+···+f(n-n)=f(0)+f(1)+···+f(n-1),同理,f(n-1)=f(0)+f(1)+···+f(n-2).
  因此,根据上述规律可以得到:f(n)=2*f(n-1)。这时一个递推公式,同样为了效率问题,用循环可以实现。

   public int JumpFloorII(int target) {
        if(target<=0)
            return 0;
        if(target==1)
            return 1;
        int res=1;
        for(int i=2;i<=target;i++)
           res=2*res;
        return res;
    }

4. 矩形覆盖

题目描述:

我们可以用2 X 1的小矩形横着或者竖着去覆盖更大的矩形。请问用n2 X 1的小矩形无重叠地覆盖一个2 X n的大矩形,总共有多少种方法?
  我们可以以2 X 8的矩形为例。
  在这里插入图片描述
先把2X8的覆盖方法记为f(8),用1X2的小矩形去覆盖时,有两种选择:横着放或者竖着放。当竖着放时,右边还剩下2X7的区域。很明显这种情况下覆盖方法为f(7)。当横着放时,1X2的矩形放在左上角,其下方区域只能也横着放一个矩形,此时右边区域值剩下2X6的区域,这种情况下覆盖方法为f(6)。所以可以得到:f(8)=f(7)+f(6),不难看出这仍然是斐波那契数列。

特殊情况:f(1)=1,f(2)=2

public int RectCover(int target) {
        //n=1(1),n=2(2),横(n-1),竖(n-2)
        if(target<=2)
            return target;
        int first=1,second=2,res=0;
        for(int i=3;i<=target;i++){
            res=first+second;
            first=second;
            second=res;
        }
        return res;
    }
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值