给出n个数,求所有区间满足条件的i的个数。条件为在该子区间内没有其他数值是a[i]的因子。
思路:
l[i]:第i个数满足条件最左边的边界位置,即第l[i]个数值为a[i]的因子,如果不存在,l[i]为0.
r[i]: 第i个数满足条件最右边的边界位置,即第r[i]个数值为a[i]的因子,如果不存在,l[i]为n+1.
枚举a[i]的所有因子,维护左右区间。计算a[i]能为多少个区间提供一个满足条件的数,公式为(i-l[i])*(r[i]-i)。在i的左边任意找一个起点,在i的右边任意找一个终点。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=100010;
const int mod=1e9+7;
int n,vis[N],a[N],l[N],r[N];
int main()
{
while(~scanf("%d",&n))
{
int i,j;
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
memset(vis,0,sizeof(vis));
for(i=1;i<=n;i++)
{
l[i]=0;
for(j=1;j*j<=a[i];j++)
{
//cout<<"! "<<a[i]<<" "<<j<<endl;
if(a[i]%j)
continue;
if(vis[j])
l[i]=max(l[i],vis[j]);
if(vis[a[i]/j])
l[i]=max(l[i],vis[a[i]/j]);
}
vis[a[i]]=i;
}
memset(vis,0,sizeof(vis));
for(i=n;i>=1;i--)
{
r[i]=n+1;
for(j=1;j*j<=a[i];j++)
{
if(a[i]%j)
continue;
if(vis[j])
r[i]=min(r[i],vis[j]);
if(vis[a[i]/j])
r[i]=min(r[i],vis[a[i]/j]);
}
vis[a[i]]=i;
}
ll ans=0;
for(i=1;i<=n;i++)
{
ans+=(i-l[i])*(r[i]-i);
ans%=mod;
}
printf("%lld\n",ans);
}
return 0;
}