均值哈希;感知哈希;差值哈希

本文详细介绍了三种图像哈希算法:均值哈希(aHash)、感知哈希(pHash)和差值哈希(dHash)。aHash通过缩放、灰度化、求平均值和二值化得到哈希值;pHash使用DCT变换,取低频部分二值化;dHash计算相邻像素差值生成哈希值。这些算法用于图像识别和相似性比较。
摘要由CSDN通过智能技术生成

均值哈希(aHash):

  • 图片缩放,一般为88,或者3232;
  • 图片灰度化;
  • 求平均值,并根据平均值将每一个像素二值化(大于均值为1小于均值为0);
  • 将8*8=64位bit,每8个比特为一个十六进制值,转换成字符串,生成哈希值(指纹);

感知哈希(pHash):

  • 图片缩放,一般32*32;
  • 图片灰度化;
  • 对图片进行离散余弦变换(DCT),转换频域;
  • 取频域左上角8*8大小(图片的能量都集中在低频部分,低频位于左上角);
  • 求平均值,并根据平均值将每一个像素二值化(大于均值为1小于均值为0);
  • 生成哈希值;

差值哈希(dHash):

  • 图片缩放为9*8大小;
  • 图片灰度化;
  • 差异值计算(每行相邻像素的差值,这样会生成8*8的差值,前一个像素大于后一个像素则为1,否则为0);
  • 生成哈希值;
import cv2
import numpy as np
import time
#均值哈希算法
def aHash(img):
    #缩放为8*8
    img=cv2.resize(img,(8,8),interpolation&#
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值