题目地址:LA6142
先说统计思路: 我们统计钝角和直角三角形,这样才不会重复计算,每次找到一个点后,统计这个逆时针走的这段半圆弧上的点的个数,任取两个就是钝角或者直角三角形,而且补重不漏。
找个数--二分,用upperbound 这样nlogn时间复杂度 暴力n*n*n肯定不行
注意 1 读入数据的时候,double *1000不行啊,浮点数误差+0.5 取floor 为这个wa了很久
2 180度这个点要单独考虑,
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int p[20005];
int main()
{
long long n,r;
double temp;
int cas=0;
while(cin>>n>>r)
{
if(!n) break;
long long all=n*(n-1)*(n-2)/6;
long long ans=0;
for(int i=0;i<n;i++)
{
scanf("%lf",&temp);
p[i]=floor(temp*1000+0.5);
}
sort(p,p+n);
for(int i=0;i<n;i++)
{
if(p[i]<180000)
{
long long temp=upper_bound(p, p+n, p[i]+180000)-lower_bound(p,p+n, p[i])-1;
ans+=temp*(temp-1)/2;
//cout<<'i'<<i<<"temp"<<temp<<endl;
}
else if(p[i]==180000)
{
long long b=n-i-1;
if(p[0]==0) b++;
ans+=b*(b-1)/2;
}
else
{
long long a=n-i-1;
long long b=upper_bound(p, p+n, p[i]-180000)-p+a;
ans+=b*(b-1)/2;
// cout<<'i'<<i<<"b"<<b<<endl;
}
}
printf("Case %d: %lld\n",++cas,all-ans);
}
}