题目地址: http://poj.org/problem?id=3233
思想: 1模仿快速模幂法 ; 给矩阵写一个快幂
2 但是k太大 直接求和还是会tle 这个很像等比数列求和 但是可以递归用二分求,理论基础如下 :
求和二分:A+A^2+A...+A^(2k+1)= A+A^2+...+A^k+A^(k+1)+A^(k+1)*(A+A^2+...+A^k).
3 矩阵用结构体存储很好用呀
之前 用int **存好像容易超内存 或者时间效率不高
4递归函数设计时,把调用递归的放在前面,这样实现自动回溯,而且不会爆栈
5 用g++提交会runtime error c++ ac ,坑爹 搞了一晚上
#include<iostream>
#include<cstdlib>
#define maxn 101
using namespace std;
int n;
int M;
typedef
struct
{
int m[maxn][maxn];
}matrix;
matrix per;
matrix a;
void init()
{
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
cin>>a.m[i][j];
a.m[i][j]%=M;
per.m[i][j]=(i==j);
}
}
matrix multi(matrix a,matrix b)
{
matrix ans;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
ans.m[i][j]=0;
for(int k=0;k<n;k++)
ans.m[i][j]+=(a.m[i][k]*b.m[k][j])%M;
ans.m[i][j]%=M;
}
return ans;
}
matrix quick_mod(int b)
{
matrix ans=per;
matrix aa=a;
while(b)
{
if(b&1)
{
ans=multi(ans,aa);
b--;
}
b>>=1;
aa=multi(aa,aa);
}
return ans;
}
matrix add(matrix a,matrix b)
{
matrix ans;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
ans.m[i][j]=(a.m[i][j]+b.m[i][j])%M;
// ans.m[i][j]=a.m[i][j]+b.m[i][j];
// ans.m[i][j]%=M;
}
return ans;
}
matrix sum(int n)
{
if(n==1) return a;
matrix temp,b;
temp = sum(n/2);
if(n&1)
{
matrix b=quick_mod(n/2+1);
matrix ans=multi(temp,b);
ans=add(ans,temp);
ans=add(ans,b);
return ans;
}
else
{
matrix b=quick_mod(n/2);
matrix ans=temp;
ans=multi(ans,b);
ans=add(ans,temp);
return ans;
}
// 或者这种写法
// if(n&1)
// {
// b=quick_mod(n/2+1);
// temp=add(temp,multi(temp,b));
// temp=add(temp,b);
//
//
// }
// else
// {
// b=quick_mod(n/2);
// temp=add(temp,multi(temp,b));
//
// }
// return temp;
}
int main()
{
int k;
cin>>n>>k>>M;
init();
matrix ans;
ans=sum(k);
for(int i=0;i<n;i++)
{
for(int j=0;j<n-1;j++)
cout<<ans.m[i][j]<<" ";
cout<<ans.m[i][n-1]<<endl;
}
}