poj 3233 Matrix Power Series 矩阵快速幂or二分

题目:

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3


分析:

现有题解主要是两种做法 构造矩阵+矩阵快速幂 或者 二分加速

第二种方法不难理解,式子化简一下就可以了

第一种方法挑战中直接给了一个矩阵,并没有细讲怎么想到构造这个矩阵的

http://blog.csdn.net/wangjian8006/article/details/7868864 怎么想到用这个矩阵可以参考这篇博客 


代码:

方法一代码参挑战


方法二:二分

/*
二分可过 等比数列和的二分加速
k为偶数:sum(k) = (1+A^(k/2)) *( A+A^2+……+A^(k/2)) = (1+A^(k/2)) * sum(k/2)
k为奇数:sum(k) = (1+A^(k/2)) * sum(k/2) + A^k
*/

#include<iostream>
#include<cstring>
#define size 35
using namespace std;
typedef long long ll;
int n,k,mod;
struct Mat{
    int mat[size][size];
    void clear(){
        memset(mat,0,sizeof(mat));
    }

    Mat operator *(const Mat &e) const{
        Mat tmp;
        tmp.clear();
        for(int k=0;k<size;k++)
            for(int i=0;i<size;i++){
                if(mat[i][k]==0) continue;
                for(int j=0;j<size;j++){
                   if(e.mat[k][j]==0) continue;
                    tmp.mat[i][j]+=mat[i][k]*e.mat[k][j]%mod;
                    tmp.mat[i][j]%=mod;
                }
            }
        return tmp;
    }
    Mat operator +(const Mat &e) const{
        Mat tmp;
        tmp.clear();
            for(int i=0;i<size;i++){
                for(int j=0;j<size;j++){
                    tmp.mat[i][j]=(mat[i][j]%mod+e.mat[i][j]%mod)%mod;
                }
            }
        return tmp;
    }
};
Mat m,E;
Mat pow(Mat ma,ll num){
    Mat ans;
    ans.clear();
    for(int i=0;i<n;i++) ans.mat[i][i]=1;
    while(num){
        if(num&1) ans=ans*ma;
        num/=2;
        ma=ma*ma;
    }
    return ans;
}
Mat Sum(int x){
    if(x==1) return m;
    if(x&1) return Sum(x-1)+pow(m,x);
    else return (pow(m,x/2)+E)*Sum(x/2);
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin>>n>>k>>mod;
    E.clear();
    for(int i=0;i<n;i++){
        E.mat[i][i]=1;
        for(int j=0;j<n;j++) cin>>m.mat[i][j];
    }
    Mat ans=Sum(k);
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++)
            cout<<ans.mat[i][j]<<" ";
        cout<<endl;
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值