使用Pytorch搭建CNN

好的,以下是使用 PyTorch 搭建 CNN 的基本步骤: 1. 导入必要的库和模块 ``` import torch import torch.nn as nn import torch.optim as optim ``` 2. 定义一个继承自 `nn.Module` 的 CNN 类 ``` class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(in_features=32 * 8 * 8, out_features=128) self.fc2 = nn.Linear(in_features=128, out_features=10) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 32 * 8 * 8) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x ``` 以上代码定义了一个包含两个卷积层和两个全连接层的 CNN,其中卷积层采用的是 3x3 的卷积核,步长为 1,padding 为 1,池化层采用的是 2x2 的池化核,步长为 2。 3. 加载数据集 ``` from torchvision import datasets, transforms transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True) ``` 以上代码加载了 CIFAR10 数据集,并对每个样本进行了归一化处理。 4. 定义损失函数和优化器 ``` criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) ``` 以上代码使用交叉熵损失函数和随机梯度下降优化器。 5. 训练模型 ``` for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 200 == 199: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = 0.0 ``` 以上代码使用训练集对模型进行训练,每个 epoch 中对所有样本进行一次训练,并在每个 batch 结束时输出 loss 值。 6. 测试模型 ``` correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy on test set: %d %%' % (100 * correct / total)) ``` 以上代码使用测试集对模型进行测试,并计算测试集准确率。 以上就是使用 PyTorch 搭建 CNN 的基本步骤。
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值