大菲波数(hdu1715,大数加法)

求0至1000的菲波数,本质上是大数加法


Problem Description

Fibonacci数列,定义如下:
f(1)=f(2)=1
f(n)=f(n-1)+f(n-2) n>=3。

计算第n项Fibonacci数值。


Input

输入第一行为一个整数N,接下来N行为整数Pi(1<=Pi<=1000)


Output

输出为N行,每行为对应的f(Pi)。


Sample Input
5
1
2
3
4

5


Sample Output
1
1
2
3

5


想法:

先通过模拟菲波数列的推导过程,把0至1000的菲波数列全部计算出来(相当于计算1000次大数加法),将结果存入二维数组中,有点类似打表。

最后根据输入的数,输出与之对应下标的菲波数


c代码:

#include<stdio.h>
#include<string.h>
int main()
{
    //freopen("in.txt","r",stdin);
    char p[1005][500];
    int n,l,t,i,j;

    //为p[1]与p[2]赋初值
    strcpy(p[1],"1");
    strcpy(p[2],"1");
 
    //数是倒过来存在数组中的,即一个数的低位在数组的开头,高位在数组的末尾

    for(i=3;i<=1000;i++)
    {
        for(t=0,j=0;p[i-1][j]!='\0'||p[i-2][j]!='\0';j++)
        {
            //p[i-2]的长度小于等于p[i-1],故只需考虑两种情况
            //t表示进位

            if(p[i-1][j]!='\0'&&p[i-2][j]!='\0')       //情况一:p[i-1]与p[i-2]都有该位
            {
                p[i][j]=p[i-1][j]+p[i-2][j]-2*'0'+t;   //由于p[i-1][j],p[i-2][j]都是字符,故要对他们进行运算,必须先减'0'变为数字
                t=p[i][j]/10;                          //获得进位
                p[i][j]=p[i][j]%10+'0';                //重新变为字符
            }
            else if(p[i-2][j]=='\0')                   //情况二:p[i-1]有该位,p[i-2]无该位(如p[6]=“8”无十位,p[7]=“13”有十位)
            {
                p[i][j]=p[i-1][j]-'0'+t;
                t=p[i][j]/10;
                p[i][j]=p[i][j]%10+'0';
            }
        }
        if(t)                       //应对p[5](值为5)与p[6](值为8)情况,有进位
        {
            p[i][j++]=t+'0';
        }
        p[i][j]='\0';
    }

    scanf("%d",&n);
    while(n--)
    {
        scanf("%d",&t);
        l=strlen(p[t])-1;
        for(i=l;i>=0;i--)          //由于数的低位在p[t][0]处,故反过来输出
        {
            printf("%c",p[t][i]);
        }
        printf("\n");
    }
    return 0;
}


java中有个大数类,用起来也比较方便


java代码:
import java.util.Scanner;      //引入java中的输入类所在包
import java.math.BigInteger;   //引入java中的大数类所在包
public class Main {
    public static void main(String args[])
    {
        Scanner read=new Scanner(System.in);  //创建一个输入类对象read
        BigInteger p[]=new BigInteger[1005];  //创建大数的数组
        BigInteger one=new BigInteger("1");
        int i,t,n;
        p[1]=p[2]=one;          //赋初值
        for(i=3;i<=1000;i++)
        {
            p[i]=p[i-1].add(p[i-2]);          //p[i]=p[i-1]+p[i-2]
        }
        t=read.nextInt();       //读入询问次数
        while(t!=0)
        {
            t--;
            n=read.nextInt();   //读入下标
            System.out.println(p[n]);
        }
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值