题目大意是说,有个n个lake,从1到n编号,先输入n,后输入一个h,表示一共有h个小时,之后是n个数字,表示每个lake初始5分钟可以钓到的鱼的数量,下一行又n个整数,表示每个lake每钓5分钟鱼减少的数量,之后是n-1个整数,第i个整数表示从第i个lake到第i+1个lake所需时间。
lrj黑书上的一道题目,有题目可知,我们从1出发,最优方案一定是不回头的,这个证明比较简单,我们设在第i个lake处总共呆了t单位时间,那么我们有两种选择,在i处呆够t再走,或者先待x(x<t)单位时间,之后再返回呆t-x点位时间,这样二比一会多一个路上的时间。根据这个性质,我们枚举结束点,对于以end点结束的情况,我们先用总单位时间减去从1到end的路上的时间,此时我们便可认为我们能够瞬移到任意一个lake,接下来对每一个单位时间,我们算出一个能得到最大数量的lake,更新信息即可。
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int f[30],d[30],t[30];
int temp[30],ans[30],total=0,h;
int solve(int n)
{
int th=h;
th-=t[n];
if(th<=0) return -1;
int total1=0,tf[30];
memset(temp,0,sizeof(temp));
for(int i=1;i<=n;i++) tf[i]=f[i];// 给f复制一个副本
for(;th;th--){
int Max=-1,p=0;
for(int i=1;i<=n;i++) if(tf[i]>Max){// 这里一定是>而不是>=
Max=tf[i];p=i;
}
total1+=tf[p];temp[p]++;
if((tf[p]-d[p])<0) tf[p]=0;
else tf[p]-=d[p];
}
return total1;
}
int main()
{
int n;
bool ca=false;
while(cin>>n&&n){
if(ca) cout<<endl;
else ca=!ca;// 处理空行
cin>>h;h*=12;t[1]=0;
for(int i=1;i<=n;i++) cin>>f[i];
for(int i=1;i<=n;i++) cin>>d[i];
for(int i=2;i<=n;i++) {cin>>t[i];t[i]+=t[i-1];}
int total=0,tt;
memset(ans,0,sizeof(ans));
for(int end=1;end<=n;end++) if((tt=solve(end))>total){
total=tt;
for(int i=1;i<=end;i++) ans[i]=temp[i];
}
if(!total) ans[1]=h;// 友情提示:这里是特殊情况
for(int i=1;i<=n;i++){
cout<<ans[i]*5;
if(i==n) cout<<endl;
else cout<<", ";
}
cout<<"Number of fish expected: "<<total<<endl;
}
return 0;
}