多目标优化问题中常见分解方法的理解

        作为刚上研一提前来给老师当苦力的小菜鸟,第一次学习MOEAD算法的时候,对其中介绍的分解方法一脸懵*,上网查了不少资料,很难查到详细的解释(好吧,可能我查的姿势不对),完全不理解这些分割方法所给出的表达式的意义,索性搁置了小半个月。

这里必须要感谢一下Chithonhttp://blog.csdn.net/qithon/article/details/72885053#comments这篇博客,其中的两幅配图让我豁然开朗,当然,大神完全没有必要阅读这篇博客了,我只是说一下自己从向量和几何的角度是如何理解这些方法的。


Weighted Sum Approach

        该方法给出的表达式为:

        

        首先,λ被称之为权重向量,观察和式,这完全就是m维向量的点乘公式嘛。具体的说,在目标空间中,把算法求出的一个目标点和原点相连构造成一个向量,此时,该方法的做法是将该向量与对应权重向量点乘,由向量点乘的几何意义可知,所得的数为该向量在权重向量方向上的投影长度,因为权重向量不变,最大/小化该长度值其实就是在优化该向量。可知若要增大该向量在权重向量上投影的长度,一方面可以增大/减小与权重向量的夹角,另一方面可以增大/减小该向量的长度。样例图如下:

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值