集合概述和表示
集合论的基本理论创立于19世纪,集合(set)是“确定的一堆东西”,集合里的“东西”则称为元素(element)。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
集合具有确定性、无序性、互异性.
集合的表示:
1. 描述法:S = {x | x是...}
2. 列举法:S = {1, 2, 3, 4, 5}
一些基本集(basic set)的表示:
(自然数集)、
(整数集)、
(有理数集)、
(实数集)、
(复数集)、
(空集(empty set)).
集合里的“东西”称为元素,集合的元素不一定是数,比如,
它也是集合;集合的元素可以也是集合,如
,这种集合称为集族.
注意:不存在集合S,S是自己的元素.
一般情况下,方程(组)的解集要写成有序对的集合,如同时满足,
的解是
.
集合的关系、运算
有穷集合S的大小称为基数(cardinal number),记作.
一些关系:
(x属于S),
(x不属于S),
(包含于,A的所有元素都在B中,A是B的子集(subset)),
(真包含于,
,A是B的真子集).
一些运算:
(A交B(intersection),A、B的相交元素),
(A并B(union),A、B的所有元素),
(A差B,也称相对补集,即A所有不在B中的元素),
(绝对补集,即(在全集U中)不在S中的所有元素,若显式指定全集U,也可记作
;注意全集是人为指定的,具有相对性).
(集合的笛卡尔积,又称直积,是A的所有元素分别与B的所有元素组成的有序对).
(幂集,即S所有自己的集合).
e.g.
1属于{1, 2, 3};{1, 2}包含于R;{1, 2} ∩ {2, 3} = {2}; {-1, 2, 1} ∪ {2, 3} = {-1, 1, 2, 3}.
当U = R时,{x | x<1}的补集是{x | x>=1},{1}的补集是{x | x != 1}.
若a(x)的零点集合为A,b(x)的零点集合为B,则分式A(x)/B(x)=0的解集为.
{1, 2} × {2, 3, 4} = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)}.
集合的运算性质
集合的交、补满足结合律、交换律,同时互相满足分配律:
同时满足如下的德摩根定律:
若A,B,S有穷,则有:
注意,笛卡尔积一般不满足交换律,但是显然存在双射.
因此得到,集合S的子集数量是,真子集数量是
区间
区间(interval):
(开区间(open interval));
(闭区间(closed interval));
(左开右闭区间);
(左闭右开区间);
以上四种区间的a,b称为区间的端点.
若区间一端无限制,则称其为无限区间(infinite interval),将其一端记为∞,如:
,
.
此外,是单元素集,称为退化区间。
以上区间的长度(测度)为.
开区间(a,b)具有以下特性:任意,都存在
,使得
.
一般情况下,不等式的解集需写成区间的形式,如的解集是
.