[纯数] 集合论

集合概述和表示

 集合论的基本理论创立于19世纪,集合(set)是“确定的一堆东西”,集合里的“东西”则称为元素(element)。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。

集合具有确定性、无序性、互异性.

集合的表示:

1. 描述法:S = {x | x是...}

2. 列举法:S = {1, 2, 3, 4, 5}

一些基本集(basic set)的表示:

\mathbb{N}(自然数集)、\mathbb{Z}(整数集)、\mathbb{Q}(有理数集)、\mathbb{R}(实数集)、\mathbb{C}(复数集)、\varnothing(空集(empty set)).

集合里的“东西”称为元素,集合的元素不一定是数,比如\{person1, person2\}\{(1, 2), (3, 4)\}它也是集合;集合的元素可以也是集合,如\{\{1, 2\}, \{2, 3\}\},这种集合称为集族.

注意:不存在集合S,S是自己的元素.

一般情况下,方程(组)的解集要写成有序对的集合,如同时满足x+y=12x+y=2的解是{(1, 0)}.

集合的关系、运算

有穷集合S的大小称为基数(cardinal number),记作|S|.

一些关系:

x \in S(x属于S),x \notin S(x不属于S),

A\subseteq B(包含于,A的所有元素都在B中,A是B的子集(subset)),

A \subset B(真包含于,A \subseteq B \wedge A \neq B,A是B的真子集).

一些运算:

A \cap B(A交B(intersection),A、B的相交元素),

A \cup B(A并B(union),A、B的所有元素),

A \textbackslash B(A差B,也称相对补集,即A所有不在B中的元素),

\overline{S} = \{x|x\notin S \wedge x \in U\}(绝对补集,即(在全集U中)不在S中的所有元素,若显式指定全集U,也可记作C_{U}S;注意全集是人为指定的,具有相对性).

A\times B=\{(a, b)|a\in A, b\in B\}(集合的笛卡尔积,又称直积,是A的所有元素分别与B的所有元素组成的有序对).

2^S(幂集,即S所有自己的集合).

e.g.

1属于{1, 2, 3};{1, 2}包含于R;{1, 2} ∩ {2, 3} = {2}; {-1, 2, 1} ∪ {2, 3} = {-1, 1, 2, 3}.

当U = R时,{x | x<1}的补集是{x | x>=1},{1}的补集是{x | x != 1}.

若a(x)的零点集合为A,b(x)的零点集合为B,则分式A(x)/B(x)=0的解集为A \cap \overline{B}.

{1, 2} × {2, 3, 4} = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)}.

集合的运算性质

集合的交、补满足结合律、交换律,同时互相满足分配律:

A\cap B = B\cap A, A\cup B = B\cup A

(A\cap B) \cap C = A\cap (B\cap C), (A\cup B) \cup C = A\cup (B\cup C)

同时满足如下的德摩根定律:

\overline{A\cap B} = \overline{A} \cup \overline{B}, \overline{A\cup B} = \overline{A} \cap \overline{B}

若A,B,S有穷,则有:

|A\times B| = |A| \times |B|, |2^S|=2^{|S|}

注意A \times B \neq B \times A,笛卡尔积一般不满足交换律,但是显然存在双射.

因此得到,集合S的子集数量是2^{|S|},真子集数量是2^{|S|}-1

区间

区间(interval):

(开区间(open interval))\{x | a < x < b\} = (a, b)

(闭区间(closed interval))\{x | a \le x \le b\} = [a, b]

(左开右闭区间)\{x | a < x \le b\} = (a, b]

(左闭右开区间)\{x | a \le x < b\} = [a, b)

以上四种区间的a,b称为区间的端点.

若区间一端无限制,则称其为无限区间(infinite interval),将其一端记为∞,如:

R = (-\infty, +\infty)\{x|x>2\}=(2, +\infty).

此外,[a, a] = \{a\}是单元素集,称为退化区间。

以上区间的长度(测度)为\max \{0, b-a\}.

开区间(a,b)具有以下特性:任意x \in (a, b),都存在\delta>0,使得(x+\delta, x-\delta) \subset (a, b).

一般情况下,不等式的解集需写成区间的形式,如\frac{x+2}{3}>1的解集是(1, +\infty).

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嘉定世外的JinJiayang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值